Speed–accuracy trade-offs in myocontrol

2006 ◽  
Vol 25 (2) ◽  
pp. 165-180 ◽  
Author(s):  
Eric J. Fimbel ◽  
Martin Lemay ◽  
Martin Arguin
Keyword(s):  
2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


2012 ◽  
Vol 85 (2) ◽  
pp. 274-277 ◽  
Author(s):  
Qingyang Li ◽  
Michael T. Amlung ◽  
Manouela Valtcheva ◽  
Jazmin Camchong ◽  
Benjamin P. Austin ◽  
...  

Author(s):  
William S. Evans ◽  
Robert Cavanaugh ◽  
Yina Quique ◽  
Emily Boss ◽  
Jeffrey J. Starns ◽  
...  

Purpose The purpose of this study was to develop and pilot a novel treatment framework called BEARS (Balancing Effort, Accuracy, and Response Speed). People with aphasia (PWA) have been shown to maladaptively balance speed and accuracy during language tasks. BEARS is designed to train PWA to balance speed–accuracy trade-offs and improve system calibration (i.e., to adaptively match system use with its current capability), which was hypothesized to improve treatment outcomes by maximizing retrieval practice and minimizing error learning. In this study, BEARS was applied in the context of a semantically oriented anomia treatment based on semantic feature verification (SFV). Method Nine PWA received 25 hr of treatment in a multiple-baseline single-case series design. BEARS + SFV combined computer-based SFV with clinician-provided BEARS metacognitive training. Naming probe accuracy, efficiency, and proportion of “pass” responses on inaccurate trials were analyzed using Bayesian generalized linear mixed-effects models. Generalization to discourse and correlations between practice efficiency and treatment outcomes were also assessed. Results Participants improved on naming probe accuracy and efficiency of treated and untreated items, although untreated item gains could not be distinguished from the effects of repeated exposure. There were no improvements on discourse performance, but participants demonstrated improved system calibration based on their performance on inaccurate treatment trials, with an increasing proportion of “pass” responses compared to paraphasia or timeout nonresponses. In addition, levels of practice efficiency during treatment were positively correlated with treatment outcomes, suggesting that improved practice efficiency promoted greater treatment generalization and improved naming efficiency. Conclusions BEARS is a promising, theoretically motivated treatment framework for addressing the interplay between effort, accuracy, and processing speed in aphasia. This study establishes the feasibility of BEARS + SFV and provides preliminary evidence for its efficacy. This study highlights the importance of considering processing efficiency in anomia treatment, in addition to performance accuracy. Supplemental Material https://doi.org/10.23641/asha.14935812


2018 ◽  
Vol 51 (1) ◽  
pp. 40-60 ◽  
Author(s):  
Heinrich René Liesefeld ◽  
Markus Janczyk

2018 ◽  
Author(s):  
James Marshall ◽  
Ralf H.J.M. Kurvers ◽  
Jens Krause ◽  
Max Wolf

Majority-voting and the Condorcet Jury Theorem pervade thinking about collective decision-making. Thus, it is typically assumed that majority-voting is the best possible decision mechanism, and that scenarios exist where individually-weak decision-makers should not pool information. Condorcet and its applications implicitly assume that only one kind of error can be made, yet signal detection theory shows two kinds of errors exist, ‘false positives’ and ‘false negatives’. We apply signal detection theory to collective decision-making to show that majority voting is frequently sub-optimal, and can be optimally replaced by quorum decision-making. While quorums have been proposed to resolve within-group conflicts, or manage speed-accuracy trade-offs, our analysis applies to groups with aligned interests undertaking single-shot decisions. Our results help explain the ubiquity of quorum decision-making in nature, relate the use of sub- and super-majority quorums to decision ecology, and may inform the design of artificial decision-making systems.Impact StatementTheory typically assumes that majority voting is optimal; this is incorrect – majority voting is typically sub-optimal, and should be replaced by sub-majority or super-majority quorum voting. This helps explain the prevalence of quorum-sensing in even the simplest collective systems, such as bacterial communities.


1985 ◽  
pp. 79-123 ◽  
Author(s):  
R. A. Schmidt ◽  
D. E. Sherwood ◽  
H. N. Zelaznik ◽  
B. J. Leikind

2019 ◽  
Vol 9 (4) ◽  
pp. 41 ◽  
Author(s):  
Wu ◽  
Struys ◽  
Lochtman

The effect of bilingualism on inhibition control is increasingly under ongoing exploration. The present study primarily investigated the effect of within bilingual factors (i.e., dominance types of Uyghur-Chinese bilinguals) on a Stimulus-Stimulus task (Flanker) and a Stimulus-Response task (Simon). We also compared the bilinguals' performance on each type of cognitive control task in respect to a possible trade-off between speed and accuracy. The findings showed no explicit differences on performance in response time or accuracy among balanced, L1-dominant and L2-dominant bilinguals but balanced bilinguals demonstrated a significant speed-accuracy trade-off in the overall context switching between non-conflict and conflict trials in both cognitive control tasks where monitoring process is highly demanded. Additionally, all bilinguals across all language dominance types showed a trade-off strategy in inhibition during a Stimulus-Stimulus conflict (flanker task). This evidence indicates that the differences of within bilinguals in cognitive control could lie in the monitoring process, while for all bilinguals, inhibition during a Stimulus-Stimulus conflict could be a major component in the mechanism of bilingual language processing.


2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Alexandra K. S. Kasper ◽  
David A. Sivak

Sign in / Sign up

Export Citation Format

Share Document