scholarly journals X-ray photoelectron spectroscopy of transition metal ions attached to the surface of rod-shape anatase TiO2 nanocrystals

2014 ◽  
Vol 422 ◽  
pp. 8-13 ◽  
Author(s):  
Ajay Sathe ◽  
Matthea A. Peck ◽  
Choumini Balasanthiran ◽  
Marjorie A. Langell ◽  
Robert M. Rioux ◽  
...  
2014 ◽  
Vol 887-888 ◽  
pp. 388-394 ◽  
Author(s):  
Xin Hua Liu ◽  
Yi Deng ◽  
Yu Chuan Zhang ◽  
Yin Hang Zhou

The structures and optical performances of TiO2doped with 4thperiodic transition metal ions were investigated in this paper. The characterization results of X-ray photoelectron spectroscopy and X-ray diffraction showed that the transition metal ions existed in oxidative states, and composites formed because of the reaction between doped metal ions and TiO2. The absorption spectroscopy of TiO2doped with zinc was mainly in ultraviolet region, close to that of the pure TiO2. While for TiO2doped with other transition metal ions including V, Cr, Mn, Fe, Co, Ni and Cu ions, the absorption spectroscopies covered ultraviolet region and visible light region, much broader than that of the pure TiO2.


2015 ◽  
Vol 3 (24) ◽  
pp. 13031-13038 ◽  
Author(s):  
Gui-Liang Xu ◽  
Yan Qin ◽  
Yang Ren ◽  
Lu Cai ◽  
Ke An ◽  
...  

In situ high-energy X-ray diffraction and neutron diffraction were deployed to trace the migration of transition metal ions in LiNi0.5Mn1.5O4.


CrystEngComm ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 1009-1023 ◽  
Author(s):  
Ghodrat Mahmoudi ◽  
Alfonso Castiñeiras ◽  
Piotr Garczarek ◽  
Antonio Bauzá ◽  
Arnold L. Rheingold ◽  
...  

Herein we report the synthesis, X-ray characterization, DFT calculations and Hirshfeld surface analysis of seven complexes of transition metal ions with pyridine-based thiosemicarbazone ligands.


1996 ◽  
Vol 246 (1-2) ◽  
pp. 371-377 ◽  
Author(s):  
Anthony J. Leong ◽  
Leonard F. Lindoy ◽  
David C.R. Hockless ◽  
Gerhard F. Swiegers ◽  
S.Bruce Wild

2014 ◽  
Vol 50 (43) ◽  
pp. 5721 ◽  
Author(s):  
Choumini Balasanthiran ◽  
James D. Hoefelmeyer

2021 ◽  
Author(s):  
Anees AHMAD Ansari ◽  
Manawwer Alam

Abstract Chemically synthesized cobalt-doped cerium oxide nanoparticles(CeO2:Co;NPs) were successfully prepared by complexed based co-precipitation process. The structural, morphological, chemical composition, optical properties, and electro-catalytic properties were determined by X-ray diffraction pattern(XRD), transmission electron microscopy(TEM), energy dispersive x-ray analysis (EDX), UV/Visible absorption spectroscopy, and cyclic voltammetry techniques. Owing to the wide-spread applications of CeO2 NPs in various fields of applied material sciences, transition metal ions doped CeO2:Co NPs exhibited excellent electro-catalytic properties. Outstanding physiochemical properties of CeO2 such as reversible oxidation states, high ionic mobility, large oxygen storage ability, effective large specific surface area, and the excellent current response observed in the electrocatalytic oxidation of hydrazine. The presence of transition metal ions (cobalt) improves the oxidation potential of hydrazine. Cyclic voltammetry was analog with the electrochemical impedance spectroscopy results, which revealed the enhanced with rapid sensing response against hydrazine. The electro-catalytic results of the CeO2:Co NPs electrode exhibited excellent voltammetry and impedance spectroscopy performance towards the hydrazine oxidation. The fabricated chemical sensor shows a wide linear detection range from 7.18 to 1000 µM, a low detection limit 7.2 µM, and sensitivity of 2.42 µAmLµM-1cm-2. The fabricated sensing electrode demonstrated long-term steadiness resulting it shows high sensitivity, selectivity, repeatability/reproducibility, and rapid detection of hydrazine.


2021 ◽  
Author(s):  
◽  
Bridget Ingham

<p>This thesis demonstrates the rich low-dimensional physics associated with the class of organic-inorganic hybrid materials based on atomic layers of a metal oxide separated by organic spacer molecules. Hybrid materials based on tungsten oxide and also transition metal tungstates (with manganese, iron, cobalt, nickel and copper) were synthesised and characterised using a variety of techniques. The materials in question represent one example of the huge variety of systems classed as 'organic-inorganic hybrids' and have the potential to combine the high-electron mobility of the metal oxide layers with the propensity for self-assembly of the organic layers. The crystal structures of the compounds were investigated using powder X-ray diffraction and electron diffraction, and compared with structural information obtained using IR, Raman, and extended X-ray absorption fine structure (EXAFS) spectroscopies. This data confirmed the presence of a 2- dimensional layered structure. The electronic properties of the hybrids were studied using optical spectroscopy and confirmed via ab initio calculations. The band gaps of the tungsten oxide hybrids were found to be independent of interlayer spacing, and in all cases were larger than that observed in the three dimensional WO3 'parent' material. For the transition metal tungstate hybrids there appeared to be significant interactions between the organic amines and the transition metal ions within the inorganic layers. The magnetic properties of the hybrids incorporating transition metal ions were also studied in detail. Many of these metal tungstate hybrids display magnetic transitions at low temperatures indicating a crossover from 2-dimensional to 3-dimensional behaviour. This illustrates the importance of the low-dimensional nature of the inorganic layers in these hybrid materials and thus their potential in nano-structural applications.</p>


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 601
Author(s):  
Oriele Palumbo ◽  
Jessica Manzi ◽  
Daniele Meggiolaro ◽  
Francesco M. Vitucci ◽  
Francesco Trequattrini ◽  
...  

Transition metal substitution is a key strategy to optimize the functional properties of advanced crystalline materials used as positive electrodes in secondary lithium batteries (LIBs). Here we investigate the structural alterations in the olivine lattice of Mn and Ni substituted LiCoPO4 phase and the impact on performance in LIBs. X-ray diffraction (XRD) and extended X-ray absorption experiments have been carried out in order to highlight the structural alterations induced by partial substitution of cobalt by manganese and nickel. XRD analysis suggests that substitution induces an expansion of the lattices and an increase of the antisite disorder between lithium and transition metal ions in the structure. XAS data highlight negligible electronic disorder but a relevant modulation in the local coordination around the different metal ions. Moreover, galvanostatic tests showed poor reversibility of the redox reaction compared to the pure LCP sample, and this failure is discussed in detail in view of the observed remarkable structural changes.


Sign in / Sign up

Export Citation Format

Share Document