Forced convection on grey cast iron plate-fins: Prediction of the heat transfer coefficient

Author(s):  
M.J. Silva ◽  
P.S.B. Zdanski ◽  
M. Vaz Jr.
2002 ◽  
Vol 124 (3) ◽  
pp. 155-163 ◽  
Author(s):  
A. Bhattacharya ◽  
R. L. Mahajan

In this paper, we present recent experimental results on forced convective heat transfer in novel finned metal foam heat sinks. Experiments were conducted on aluminum foams of 90 percent porosity and pore size corresponding to 5 PPI (200 PPM) and 20 PPI (800 PPM) with one, two, four and six fins, where PPI (PPM) stands for pores per inch (pores per meter) and is a measure of the pore density of the porous medium. All of these heat sinks were fabricated in-house. The forced convection results show that heat transfer is significantly enhanced when fins are incorporated in metal foam. The heat transfer coefficient increases with increase in the number of fins until adding more fins retards heat transfer due to interference of thermal boundary layers. For the 20 PPI samples, this maximum was reached for four fins. For the 5 PPI heat sinks, the trends were found to be similar to those for the 20 PPI heat sinks. However, due to larger pore sizes, the pressure drop encountered is much lower at a particular air velocity. As a result, for a given pressure drop, the heat transfer coefficient is higher compared to the 20 PPI heat sink. For example, at a Δp of 105 Pa, the heat transfer coefficients were found to be 1169W/m2-K and 995W/m2-K for the 5 PPI and 20 PPI 4-finned heat sinks, respectively. The finned metal foam heat sinks outperform the longitudinal finned and normal metal foam heat sinks by a factor between 1.5 and 2, respectively. Finally, an analytical expression is formulated based on flow through an open channel and incorporating the effects of thermal dispersion and interfacial heat transfer between the solid and fluid phases of the porous medium. The agreement of the proposed relation with the experimental results is promising.


1977 ◽  
Vol 99 (4) ◽  
pp. 507-512 ◽  
Author(s):  
E. M. Sparrow ◽  
K. K. Tien

Experiments have been performed to determine the average heat transfer coefficients for forced convection airflow over a square plate that is inclined and yawed relative to the oncoming flow. The experiments involved mass transfer and were carried out via the naphthalene sublimation technique, with air as the working fluid. By means of the analogy between heat and mass transfer, the results are presented in a form that can be used directly for heat transfer applications. The experiments encompassed a wide range of angles of yaw and angles of attack, and extended over a Reynolds number range from about 20,000 to 100,000. It was found that owing to three dimensional flow effects, the transfer coefficients were remarkably insensitive to both the angle of attack and the angle of yaw. This enabled all the results to be correlated by the equation j = 0.931Re−1/2 (where j = (h/ρcpU∞)Pr2/3) with an accuracy of ±2 1/2 percent. The correlation equation was applied to the determination of the heat transfer coefficient for wind-related heat losses from a flat plate solar collector. It was demonstrated that the currently standard computational equation (which is, in reality, not well suited to the application) substantially overestimates the heat transfer coefficient.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


Sign in / Sign up

Export Citation Format

Share Document