Computational Assessment of the Heat Transfer Coefficient Under Forced Convection of Multiple Metal Foam Fins Heat Sinks

2017 ◽  
Vol 42 (11) ◽  
pp. 4853-4861 ◽  
Author(s):  
Khaled S. Al-Athel
2002 ◽  
Vol 124 (3) ◽  
pp. 155-163 ◽  
Author(s):  
A. Bhattacharya ◽  
R. L. Mahajan

In this paper, we present recent experimental results on forced convective heat transfer in novel finned metal foam heat sinks. Experiments were conducted on aluminum foams of 90 percent porosity and pore size corresponding to 5 PPI (200 PPM) and 20 PPI (800 PPM) with one, two, four and six fins, where PPI (PPM) stands for pores per inch (pores per meter) and is a measure of the pore density of the porous medium. All of these heat sinks were fabricated in-house. The forced convection results show that heat transfer is significantly enhanced when fins are incorporated in metal foam. The heat transfer coefficient increases with increase in the number of fins until adding more fins retards heat transfer due to interference of thermal boundary layers. For the 20 PPI samples, this maximum was reached for four fins. For the 5 PPI heat sinks, the trends were found to be similar to those for the 20 PPI heat sinks. However, due to larger pore sizes, the pressure drop encountered is much lower at a particular air velocity. As a result, for a given pressure drop, the heat transfer coefficient is higher compared to the 20 PPI heat sink. For example, at a Δp of 105 Pa, the heat transfer coefficients were found to be 1169W/m2-K and 995W/m2-K for the 5 PPI and 20 PPI 4-finned heat sinks, respectively. The finned metal foam heat sinks outperform the longitudinal finned and normal metal foam heat sinks by a factor between 1.5 and 2, respectively. Finally, an analytical expression is formulated based on flow through an open channel and incorporating the effects of thermal dispersion and interfacial heat transfer between the solid and fluid phases of the porous medium. The agreement of the proposed relation with the experimental results is promising.


Author(s):  
Tannaz Harirchian ◽  
Suresh V. Garimella

Two-phase heat transfer in microchannels can support very high heat fluxes for use in high-performance electronics-cooling applications. However, the effects of microchannel cross-sectional dimensions on the heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer in microchannel heat sinks. The effect of channel size on the heat transfer coefficient and pressure drop is studied for mass fluxes ranging from 250 to 1600 kg/m2s. The test sections consist of parallel microchannels with nominal widths of 100, 250, 400, 700, and 1000 μm, all with a depth of 400 μm, cut into 12.7 mm × 12.7 mm silicon substrates. Twenty-five microheaters embedded in the substrate allow local control of the imposed heat flux, while twenty-five temperature microsensors integrated into the back of the substrates enable local measurements of temperature. The dielectric fluid Fluorinert FC-77 is used as the working fluid. The results of this study serve to quantify the effectiveness of microchannel heat transport while simultaneously assessing the pressure drop trade-offs.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5219
Author(s):  
Jin-Cherng Shyu ◽  
Jhao-Siang Jheng

Because the delta winglet in common-flow-down configuration has been recognized as an excellent type of vortex generators (VGs), this study aims to experimentally and numerically investigate the thermo-hydraulic performance of four different forms of winglet VGs featuring sweptback delta winglets in the channel flow in the range 200 < Re < 1000. Both Nusselt number and friction factor of plate-fin heat sinks having different forms of winglets, including delta winglet pair (DWP), rectangular winglet pair (RWP), swept delta winglet pair (SDWP), and swept trapezoid winglet pair (STWP), were measured in a standard wind tunnel without bypass in this study. Four rows of winglets with in-line arrangement were punched on each 10-mm-long, 0.2-mm-thick copper plate, and a total of 16 pieces of copper plates with spacing of 2 mm were fastened together to achieve the heat sink. The projected area, longitudinal and winglet tip spacing, height and angle of attack of those winglets were fixed. Besides that, three-dimensional numerical simulation was also performed in order to investigate the temperature and fluid flow over the plate-fin. The results showed that the longitudinal, common-flow-down vortices generated by the VGs augmented the heat transfer and pressure drop of the heat sink. At airflow velocity of 5 m/s, the heat transfer coefficient and pressure drop of plain plate-fin heat sink were 50.8 W/m2·K and 18 Pa, respectively, while the heat transfer coefficient and the pressure drop of heat sink having SDWP were 70.4 W/m2·K and 36 Pa, respectively. It was found that SDWP produced the highest thermal enhancement factor (TEF) of 1.28 at Re = 1000, followed by both RWP and STWP of similar TEF in the range 200 < Re < 1000. The TEF of DWP was the lowest and it was rapidly increased with the increase of airflow velocity.


2013 ◽  
Vol 448-453 ◽  
pp. 3312-3315
Author(s):  
Bin Sun ◽  
Bin Bin Cui ◽  
Chao Liang

A three-dimensional physical mode of metal foam tube was built by CFD software. The Brinkman-Forchheimer extended Darcy equation and user-defined function (UFD) of the mass transfer and energy transfer between vapor phase and liquid phase compiled by C language were used in the simulation of boiling heat transfer in metal foam tube. The results show that, at a given mass flow rate, the pressure drop nonlinearly increases as the vapor quality rises; At the low mass flow rate, with the increasing of vapor quality, the flow pattern is transferred to wavy flow from stratified flow and then transfer to stratified wavy flow, while the heat transfer coefficient decreases with the increasing of vapor quality. At the high mass flow rate, with the increasing of vapor quality, the flow pattern is transferred to annular flow from slug flow, while the heat transfer coefficient increases with the increasing of vapor quality. The simulation results agree well with the experimental data.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Shubhankar Chakraborty ◽  
Omprakash Sahu ◽  
Prasanta Kr. Das

The thermal hydraulic performance of a miniature heat sink during flow boiling of distilled water is presented in this article. The unique design of the heat sink contains a number of microchannels of 1 mm × 1 mm cross section arranged in a regular hexagonal array. The design facilitates repeated division and joining of individual streams from different microchannels and thereby can enhance heat transfer. Individual slug bubble experiences a typical route of break up, coalescence, and growth. The randomness of these processes enhances the transport of heat. With the increase of vapor quality the heat transfer coefficient increases, reaches the maximum value, and then drops. The maximum heat transfer coefficient occurs at an exit vapor quality much higher than that observed in conventional parallel microchannel heat sinks. Repeated redistribution of the coolant in the interlinked channels and the restricted growth of the slug bubbles may be responsible for this trend.


1977 ◽  
Vol 99 (4) ◽  
pp. 507-512 ◽  
Author(s):  
E. M. Sparrow ◽  
K. K. Tien

Experiments have been performed to determine the average heat transfer coefficients for forced convection airflow over a square plate that is inclined and yawed relative to the oncoming flow. The experiments involved mass transfer and were carried out via the naphthalene sublimation technique, with air as the working fluid. By means of the analogy between heat and mass transfer, the results are presented in a form that can be used directly for heat transfer applications. The experiments encompassed a wide range of angles of yaw and angles of attack, and extended over a Reynolds number range from about 20,000 to 100,000. It was found that owing to three dimensional flow effects, the transfer coefficients were remarkably insensitive to both the angle of attack and the angle of yaw. This enabled all the results to be correlated by the equation j = 0.931Re−1/2 (where j = (h/ρcpU∞)Pr2/3) with an accuracy of ±2 1/2 percent. The correlation equation was applied to the determination of the heat transfer coefficient for wind-related heat losses from a flat plate solar collector. It was demonstrated that the currently standard computational equation (which is, in reality, not well suited to the application) substantially overestimates the heat transfer coefficient.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
A. Megahed ◽  
I. Hassan

An analytical model is proposed to predict the flow boiling heat transfer coefficient in the annular flow regime in mini- and microchannel heat sinks based on the separated model. The modeling procedure includes a formulation for determining the heat transfer coefficient based on the wall shear stress and the local thermophysical characteristics of the fluid based on the Reynolds’ analogy. The frictional and acceleration pressure gradients within the channel are incorporated into the present model to provide a better representation of the flow conditions. The model is validated against collected data sets from the literature produced by different authors under different experimental conditions, different fluids, and with mini- and microchannels of hydraulic diameters falling within the range of 92–1440 μm. The accuracy between the experimental and predicted results is achieved with a mean absolute error of 10%. The present analytical model can correctly predict the different trends of the heat transfer coefficient reported in the literature as a function of the exit quality. The predicted two-phase heat transfer coefficient is found to be very sensitive to changes in mass flux and saturation temperature. However, it is found to be mildly sensitive to the change in heat flux.


Author(s):  
Mohamed I. Hassan Ali ◽  
Oraib Al-Ketan ◽  
Nada Baobaid ◽  
Kamran Khan ◽  
Rashid K. Abu Al-Rub

Abstract The drive for small and compact electronic components with higher processing capabilities is limited by their ability to dissipate the associated heat generated during operations. Therefore, these components are equipped with heat sinks to facilitate the dissipation of thermal energy. The emergence of additive manufacturing (AM) allowed for new degrees of freedom in terms of design and eliminated the need for excessive tooling that is associated with the conventional manufacturing processes. As such, AM facilitated the development of geometrically complex heat sinks that are capable of capitalizing on topological aspects to enhance their performance. The main objective of this study is to propose and develop architected heat sinks. We propose the use of heat sinks with topologies based on triply periodic minimal surfaces (TPMS). 3D CFD models are developed using Starccm+ platform for three architected heat sinks to study the heat transfer coefficient and surface temperature in free convection heat transfer domains. The heat dissipation versus the input heat sources as well as the heat transfer coefficient will be used for measuring the heat sink performance. The required fluid flow rate and pressure drop will be used to measure the required cooling power for the proposed heat sinks.


Heat sinks are frequently used in the cooling of electrical and electronics devices If the heat sink have very close fin spacing, it increases the surface area but reduces the heat transfer coefficient. On the other hand, if heat sink has wide fin spacing, it reduces the surface area but increases the heat transfer coefficient. Therefore, there is need to optimize the fin spacing that enhanced the heat transfer from the heat sink. A properly selected heat sink may reduced the operating temperature and reduce the risk of failure of components. A steady state natural convective heat transfer from aluminum plate fin heat sink was examined experimentally. The length and thickness of fin was kept constant while height were varied from 5mm to 25mm and spacing varied between 5.5mm to 17mm.After experimentation, it was observed that fin spacing plays important role than any other geometrical parameters. Response surface methodology is used for optimization of fin spacing. It is observed that optimum fin spacing of heat sink is 8.28mm.The error analysis is done with the help of ANN and flow visualization were done using CFD


Sign in / Sign up

Export Citation Format

Share Document