Effect of twisted tape inserts on heat transfer, friction factor of Fe3O4 nanofluids flow in a double pipe U-bend heat exchanger

Author(s):  
N.T. Ravi Kumar ◽  
P. Bhramara ◽  
A. Kirubeil ◽  
L. Syam Sundar ◽  
Manoj K. Singh ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Heydar Maddah ◽  
Reza Aghayari ◽  
Morshed Farokhi ◽  
Shabnam Jahanizadeh ◽  
Khatere Ashtary

Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d) of 1 mm, width (W) of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v) were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regimeRe≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


2015 ◽  
Vol 752-753 ◽  
pp. 458-465
Author(s):  
P.C. Sreekumar ◽  
K. Krishnamoorthy ◽  
R. Ratheesh

Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. Present study with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000<Re<60000). The effect of rectangular, circular, triangular baffled twisted tape having twist ratio (y/w) 4.2 and twisted tapes without baffles of twist ratio (y/w) 4.2 and 5.2 were studied. Experiments were conducted for both water and 0.1% volume concentration Alumina/water nanofluid. It is found that the enhancement of heat transfer coefficient by using rectangular baffled twisted tape and nanofluid is about 20%. Performance evaluation criteria were found for water and nanofluid and it was observed that rectangular baffled twisted tape performs better than other twisted tapes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1570
Author(s):  
Yongfeng Ju ◽  
Tiezhu Zhu ◽  
Ramin Mashayekhi ◽  
Hayder I. Mohammed ◽  
Afrasyab Khan ◽  
...  

The hydrothermal performance of multiple semi-twisted tape inserts inside a heat exchanger pipe is numerically examined in three-dimensions. This study aims to find the optimum case for having the highest heat transfer enhancement with the lowest friction factor using nanofluid (Al2O3/water). A performance evaluation criterion (PEC) is defined to characterize the performance based on both friction factor and heat transfer. It was found that increasing the number of semi-twisted tapes increases the number of swirl flow streams and leads to an enhancement in the local Nusselt number as well as the friction factor. The average Nusselt number increases from 15.13 to 28.42 and the average friction factor enhances from 0.022 to 0.052 by increasing the number of the semi-twisted tapes from 0 to 4 for the Reynolds number of 1000 for the base fluid. By using four semi-twisted tapes, the average Nusselt number increases from 12.5 to 28.5, while the friction factor reduces from 0.155 to 0.052 when the Reynolds number increases from 250 to 1000 for the base fluid. For the Reynolds number of 1000, the increase in nanofluid concentration from 0 to 3% improves the average Nusselt number and friction factor by 6.41% and 2.29%, respectively. The highest PEC is equal to 1.66 and belongs to the Reynolds number of 750 using four semi-twisted tape inserts with 3% nanoparticles. This work offers instructions to model an advanced design of twisted tape integrated with tubes using multiple semi-twisted tapes, which helps to provide a higher amount of energy demand for solar applications.


Author(s):  
Prem Kumar Chaurasiya ◽  
Sanjay Kumar Singh ◽  
Piyush Kumar Jain ◽  
Upendra Rajak ◽  
Tikendra Nath Verma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document