Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces

Author(s):  
Wei-Feng Xia ◽  
I.L. Animasaun ◽  
Abderrahim Wakif ◽  
Nehad Ali Shah ◽  
Se-Jin Yook
2006 ◽  
Vol 5-6 ◽  
pp. 407-414 ◽  
Author(s):  
Mohammad Mohammadi Aghdam ◽  
M.R.N. Farahani ◽  
M. Dashty ◽  
S.M. Rezaei Niya

Bending analysis of thick laminated rectangular plates with various boundary conditions is presented using Generalized Differential Quadrature (GDQ) method. Based on the Reissner first order shear deformation theory, the governing equations include a system of eight first order partial differential equations in terms of unknown displacements, forces and moments. Presence of all plate variables in the governing equations provide a simple procedure to satisfy different boundary condition during application of GDQ method to obtain accurate results with relatively small number of grid points even for plates with free edges .Illustrative examples including various combinations of clamped, simply supported and free boundary condition are given to demonstrate the accuracy and convergence of the presented GDQ technique. Results are compared with other analytical and finite element predictions and show reasonably good agreement.


Sign in / Sign up

Export Citation Format

Share Document