quadratic drag
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jyoti Pandey ◽  
Mohd. Zahid Ansari ◽  
Afzal Husain

Purpose Porous media can provide excellent performance in thermal energy transport applications. This study aims to optimise the square porous slabs (placed in the middle of the channel) parameters to enhance the cooling performance of the jet-impingement microchannel heat sink. Design/methodology/approach Three levels of each design parameters, i.e. porous slab side, porous slab height, type of material, permeability and quadratic drag factor, are studied; and an L27 orthogonal array is adopted to generate the design points in the specified design space. Optimum designs of the porous media slabs are achieved to minimise the maximum-wall temperature, thermal resistance and pressure drop and maximise the average heat transfer coefficient and figure of merit (FOM). Findings Results exhibited that the porous media material and permeability are the most, whereas drag factor is the least significant factors with respect to the overall performance of the heat sink. The optimum value of FOM for the proposed hybrid heat sink model belongs to the set of design variables, i.e. 0.4 mm slab side, 0.6 mm slab height, 5 × 10−11 m2 permeability, 0.21 drag factor and copper as substrate material. Originality/value This study proposes a novel design and a hybrid approach to investigate and optimise the hydrothermal performance of jet impingements on porous slabs inserted in the microchannels.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yang Qu ◽  
◽  
Xintian Liu ◽  
Minghui Zhang ◽  
Yansong Wang ◽  
...  

To study the precision of the fire water monitor with important influence on fire extinguishing effect, the drop point of fire water monitor is studied. The quadratic drag model is selected on the basis of the analysis of the mechanical model of the fluidic microbody, considering the change of the cross-sectional area caused by velocity and breakup of the water jet. The boundary between breakup and atomization is clarified, and the change of diameter and area of the droplet is also discussed based on the theory of liquid jet breakup, to build a dynamic breakup model of air resistance and broken jet. The jet trajectory of the fire water monitor is mainly influenced by the initial velocity, pitching angle, air resistance, and other factors. In this paper, the influence of different parameters on the jet drop point is considered. The analysis and comparison of all the points are performed, and the range of uncertainty is obtained. Finally, the accurate prediction of the jet trajectory is analyzed.


Author(s):  
Jody M. Klymak ◽  
Dhruv Balwada ◽  
Alberto Naveira Garabato ◽  
Ryan Abernathey

AbstractSlowly-evolving stratified flow over rough topography is subject to substantial drag due to internal motions, but often numerical simulations are carried out at resolutions where this “wave” drag must be parameterized. Here we highlight the importance of internal drag from topography with scales that cannot radiate internal waves, but may be highly non-linear, and we propose a simple parameterization of this drag that has a minimum of fit parameters compared to existing schemes. The parameterization smoothly transitions from a quadratic drag law () for low- (linear wave dynamics) to a linear drag law () for high- flows (non-linear blocking and hydraulic dynamics), where N is the stratification, h is the height of the topography, and u0 is the near-bottom velocity; the parameterization does not have a dependence on Coriolis frequency. Simulations carried out in a channel with synthetic bathymetry and steady body forcing indicate that this parameterization accurately predicts drag across a broad range of forcing parameters when the effect of reduced near-bottom mixing is taken into account by reducing the effective height of the topography. The parameterization is also tested in simulations of wind-driven channel flows that generate mesoscale eddy fields, a setup where the downstream transport is sensitive to the bottom drag parameterization and its effect on the eddies. In these simulations, the parameterization replicates the effect of rough bathymetry on the eddies. If extrapolated globally, the sub-inertial topographic scales can account for 2.7 TW of work done on the low-frequency circulation, an important sink that is redistributed to mixing in the open ocean.


2020 ◽  
Vol 8 (11) ◽  
pp. 903
Author(s):  
Sixtine Neuvéglise ◽  
Gaële Perret ◽  
Hassan Smaoui ◽  
François Marin ◽  
Philippe Sergent

This paper studies the behaviour of a quayside floater oscillating in front of a vertical dike. In order to study the floater motion and the impact of the dike on the floater, a linear analytical model based on 2D potential flow theory in intermediate water depth conditions and a numerical model resolving 2D Navier–Stokes equations are developed. Physical tests performed for different floater dimensions in a wave tank are used as references for the analytical and numerical models. The comparison of the results obtained analytically, numerically and experimentally leads to the validity domain of the potential model. A correction of this model is proposed, based on the optimization of the radiated coefficients, and a quadratic drag term is added according to Morison equation. The impact of the different parameters of the system on floater behaviour is considered. Results show that the draft has the most important impact on floater motion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Arim Ko ◽  
Kyoungsik Chang ◽  
Dong-Jin Sheen ◽  
Chi-Hoon Lee ◽  
Yongin Park ◽  
...  

Numerical simulations of a spinning projectile with a diameter of 120 mm were conducted to predict the aerodynamic coefficients, and the CFD results were compared with the semiempirical method, PRODAS. Six coefficients or coefficient derivatives, including zero and the quadratic drag coefficient, lift force coefficient derivative, Magnus force coefficient derivative, overturning moment coefficient, and spinning damping moment coefficient, which are important parameters for solving the equations of motion of the spinning projectile, were investigated. Additionally, the nonlinear behavior of these coefficients and coefficient derivatives were analyzed through the predicted flow fields. The considered Mach number ranges from 0.14 to 1.2, and the nondimensional spinning rate (PD/2V) is set to 0.186. To calculate the coefficient derivative of the corresponding force or moment, additional simulations were conducted at the angle of attack of 2.5 degrees. The simulation results were able to predict nonlinear behavior, the especially abrupt change of the predicted coefficients and derivatives at the transonic Mach number, 0.95. The simulation results, including the skin friction, pressure, and velocity field, allow the characterization of the nonlinear behavior of the aerodynamic coefficients, thus, enabling better predictions of projectile trajectories.


2019 ◽  
Vol 13 (11) ◽  
pp. 2887-2900 ◽  
Author(s):  
Agnieszka Herman ◽  
Sukun Cheng ◽  
Hayley H. Shen

Abstract. The energy of water waves propagating through sea ice is attenuated due to non-dissipative (scattering) and dissipative processes. The nature of those processes and their contribution to attenuation depends on wave characteristics and ice properties and is usually difficult (or impossible) to determine from limited observations available. Therefore, many aspects of relevant dissipation mechanisms remain poorly understood. In this work, a discrete-element model (DEM) is used to study one of those mechanisms: dissipation due to ice–water drag. The model consists of two coupled parts, a DEM simulating the surge motion and collisions of ice floes driven by waves and a wave module solving the wave energy transport equation with source terms computed based on phase-averaged DEM results. The wave energy attenuation is analysed analytically for a limiting case of a compact, horizontally confined ice cover. It is shown that the usage of a quadratic drag law leads to non-exponential attenuation of wave amplitude a with distance x, of the form a(x)=1/(αx+1/a0), with the attenuation rate α linearly proportional to the drag coefficient. The dependence of α on wave frequency ω varies with the dispersion relation used. For the open-water (OW) dispersion relation, α∼ω4. For the mass loading dispersion relation, suitable for ice covers composed of small floes, the increase in α with ω is much faster than in the OW case, leading to very fast elimination of high-frequency components from the wave energy spectrum. For elastic-plate dispersion relation, suitable for large floes or continuous ice, α∼ωm within the high-frequency tail, with m close to 2.0–2.5; i.e. dissipation is much slower than in the OW case. The coupled DEM–wave model predicts the existence of two zones: a relatively narrow area of very strong attenuation close to the ice edge, with energetic floe collisions and therefore high instantaneous ice–water velocities, and an inner zone where ice floes are in permanent or semi-permanent contact with each other, with attenuation rates close to those analysed theoretically. Dissipation in the collisional zone increases with an increasing restitution coefficient of the ice and with decreasing floe size. In effect, two factors contribute to strong attenuation in fields of small ice floes: lower wave energy propagation speeds and higher relative ice–water velocities due to larger accelerations of floes with smaller mass and more collisions per unit surface area.


Sign in / Sign up

Export Citation Format

Share Document