Graphene double cross-linked thermally conductive hydrogel with low thermal contact resistance, flexibility and self-healing performance

Author(s):  
Jiawei Yang ◽  
Wei Yu ◽  
Yuan Zhang ◽  
Changqing Liu ◽  
Huaqing Xie
2010 ◽  
Vol 297-301 ◽  
pp. 1190-1198 ◽  
Author(s):  
R. Kempers ◽  
A.J. Robinson ◽  
A. Lyons

A novel Metal Micro-Textured Thermal Interface Material (MMT-TIM) has been developed to address a number of shortcomings in conventional TIMs. This material consists of a thin metal foil with raised micro-scale features that plastically deform under an applied pressure thereby creating a continuous, thermally conductive, path between the mating surfaces. One of the difficulties in experimentally characterizing MMT-TIMs however, is distinguishing the bulk thermal resistance of the MMT-TIM from the thermal contact resistance that exists where it contacts the test apparatus. Since these materials are highly electrically conductive, this study attempts to employ electrical contact resistance measurements to estimate their thermal contact resistance. Tests using flat silver and gold specimens of known bulk thermal conductivity were used to develop a correlation between electrical and thermal contact resistance. This relationship was then employed to estimate the thermal contact resistance of a prototype silver MMT-TIM and indicates the thermal contact resistance accounts for approximately 10% of the measured thermal contact resistance. A number of issues related to this technique are discussed as well as its future outlook.


2020 ◽  
Vol 27 (7) ◽  
pp. 617-627
Author(s):  
Yuanyuan Tian ◽  
Mengjun Zhang ◽  
Junli Wang ◽  
Anbang Liu ◽  
Huaqing Xie ◽  
...  

Small ◽  
2021 ◽  
pp. 2102128
Author(s):  
Taehun Kim ◽  
Seongkyun Kim ◽  
Eungchul Kim ◽  
Taesung Kim ◽  
Jungwan Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document