Mutational analysis of the PA and PB2 subunits of the influenza RNA polymerase complex leads to new insights into function

2004 ◽  
Vol 1263 ◽  
pp. 25-28
Author(s):  
Ervin Fodor ◽  
Pierre Fechter ◽  
Mandy Crow ◽  
Tao Deng ◽  
Louise Mingay ◽  
...  
1998 ◽  
Vol 72 (12) ◽  
pp. 10058-10065 ◽  
Author(s):  
Anja O. Paatero ◽  
Leonard Mindich ◽  
Dennis H. Bamford

ABSTRACT Bacteriophage φ6 is a complex enveloped double-stranded RNA virus with a segmented genome and replication strategy quite similar to that of the Reoviridae. An in vitro packaging and replication system using purified components is available. The positive-polarity genomic segments are translocated into a preformed polymerase complex (procapsid) particle. This particle is composed of four proteins: the shell-forming protein P1, the RNA polymerase P2, and two proteins active in packaging. Protein P7 is involved in stable packaging, and protein P4 is a homomultimeric potent nucleoside triphosphatase that provides the energy for the RNA translocation event. In this investigation, we used mutational analysis to study P4 multimerization and assembly. P4 is assembled onto a preformed particle containing proteins P2 and P7 in addition to P1. Only simultaneous production of P1 and P4 in the same cell leads to P4 assembly on P1 alone, whereas the P1 shell is incompetent for accepting P4 if produced separately. The C-terminal part of P4 is essential for particle assembly but not for multimerization or enzymatic activity. Altering the P4 nucleoside triphosphate binding site destroys the ability to form multimers.


1976 ◽  
Vol 19 (2) ◽  
pp. 457-466 ◽  
Author(s):  
B E Butterworth ◽  
E J Shimshick ◽  
F H Yin

2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


2008 ◽  
Vol 89 (12) ◽  
pp. 2923-2932 ◽  
Author(s):  
Birgit G. Bradel-Tretheway ◽  
Z. Kelley ◽  
Shikha Chakraborty-Sett ◽  
Toru Takimoto ◽  
Baek Kim ◽  
...  

Influenza A virus (IAV) replicates in the upper respiratory tract of humans at 33 °C and in the intestinal tract of birds at close to 41 °C. The viral RNA polymerase complex comprises three subunits (PA, PB1 and PB2) and plays an important role in host adaptation. We therefore developed an in vitro system to examine the temperature sensitivity of IAV RNA polymerase complexes from different origins. Complexes were prepared from human lung epithelial cells (A549) using a novel adenoviral expression system. Affinity-purified complexes were generated that contained either all three subunits (PA/PB1/PB2) from the A/Viet/1203/04 H5N1 virus (H/H/H) or the A/WSN/33 H1N1 strain (W/W/W). We also prepared chimeric complexes in which the PB2 subunit was exchanged (H/H/W, W/W/H) or substituted with an avian PB2 from the A/chicken/Nanchang/3-120/01 H3N2 strain (W/W/N). All complexes were functional in transcription, cap-binding and endonucleolytic activity. Complexes containing the H5N1 or Nanchang PB2 protein retained transcriptional activity over a broad temperature range (30–42 °C). In contrast, complexes containing the WSN PB2 protein lost activity at elevated temperatures (39 °C or higher). The E627K mutation in the avian PB2 was not required for this effect. Finally, the avian PB2 subunit was shown to confer enhanced stability to the WSN 3P complex. These results show that PB2 plays an important role in regulating the temperature optimum for IAV RNA polymerase activity, possibly due to effects on the functional stability of the 3P complex.


Author(s):  
Sangyool Lee ◽  
Sun Hyun Chang ◽  
Taeyoung Um ◽  
Geupil Jang ◽  
Ju-Kon Kim ◽  
...  

Virology ◽  
1994 ◽  
Vol 205 (2) ◽  
pp. 540-545 ◽  
Author(s):  
Sandra M. Horikami ◽  
Sherin Smallwood ◽  
Bettina Bankamp ◽  
Sue A. Moyer

2006 ◽  
Vol 81 (3) ◽  
pp. 1339-1349 ◽  
Author(s):  
Tadasuke Naito ◽  
Fumitaka Momose ◽  
Atsushi Kawaguchi ◽  
Kyosuke Nagata

ABSTRACT Transcription and replication of the influenza virus RNA genome occur in the nuclei of infected cells through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. We previously identified a host factor designated RAF-1 (RNA polymerase activating factor 1) that stimulates viral RNA synthesis. RAF-1 is found to be identical to Hsp90. Here, we examined the intracellular localization of Hsp90 and viral RNA polymerase subunits and their molecular interaction. Hsp90 was found to interact with PB2 and PB1, and it was relocalized to the nucleus upon viral infection. We found that the nuclear transport of Hsp90 occurs in cells expressing PB2 alone. The nuclear transport of Hsp90 was in parallel with that of the viral RNA polymerase binary complexes, either PB1 and PB2 or PB1 and PA, as well as with that of PB2 alone. Hsp90 also interacted with the binary RNA polymerase complex PB1-PB2, and it was dissociated from the PB1-PB2 complex upon its association with PA. Furthermore, Hsp90 could form a stable PB1-PB2-Hsp90 complex prior to the formation of a ternary polymerase complex by the assembly of PA in the infected cells. These results suggest that Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits, possibly as a molecular chaperone for the polymerase subunits prior to the formation of a mature ternary polymerase complex.


2020 ◽  
Vol 6 (10) ◽  
pp. 2800-2811
Author(s):  
Anand Balakrishnan ◽  
Edmund Price ◽  
Catherine Luu ◽  
Jacob Shaul ◽  
Charles Wartchow ◽  
...  

2007 ◽  
Vol 51 (7) ◽  
pp. 2293-2303 ◽  
Author(s):  
Laura K. White ◽  
Jeong-Joong Yoon ◽  
Jin K. Lee ◽  
Aiming Sun ◽  
Yuhong Du ◽  
...  

ABSTRACT Paramyxoviruses comprise several major human pathogens. Although a live-attenuated vaccine protects against measles virus (MV), a member of the paramyxovirus family, the virus remains a principal cause of worldwide mortality and accounts for approximately 21 million cases and 300,000 to 400,000 deaths annually. The development of novel antivirals that allow improved case management of severe measles and silence viral outbreaks is thus highly desirable. We have previously described the development of novel MV fusion inhibitors. The potential for preexisting or emerging resistance in the field constitutes the rationale for the identification of additional MV inhibitors with a diverse target spectrum. Here, we report the development and implementation of a cell-based assay for high-throughput screening of MV antivirals, which has yielded several hit candidates. Following confirmation by secondary assays and chemical synthesis, the most potent hit was found to act as a target-specific inhibitor of MV replication with desirable drug-like properties. The compound proved highly active against multiple primary isolates of diverse MV genotypes currently circulating worldwide, showing active concentrations of 35 to 145 nM. Significantly, it does not interfere with viral entry and lacks cross-resistance with the MV fusion inhibitor class. Mechanistic characterization on a subinfection level revealed that the compound represents a first-in-class nonnucleoside inhibitor of MV RNA-dependent RNA polymerase complex activity. Singly or in combination with the fusion inhibitors, this novel compound class has high developmental potential as a potent therapeutic against MV and will likely further the mechanistic characterization of the viral polymerase complex.


Sign in / Sign up

Export Citation Format

Share Document