plastid rna polymerase
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 2)

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1658
Author(s):  
Aleksandra A. Andreeva ◽  
Radomira Vankova ◽  
Ivan A. Bychkov ◽  
Natalia V. Kudryakova ◽  
Maria N. Danilova ◽  
...  

Cytokinins (CKs) are known to regulate the biogenesis of chloroplasts under changing environmental conditions and at different stages of plant ontogenesis. However, the underlying mechanisms are still poorly understood. Apparently, the mechanisms can be duplicated in several ways, including the influence of nuclear genes that determine the expression of plastome through the two-component CK regulatory circuit. In this study, we evaluated the role of cytokinins and CK signaling pathway on the expression of nuclear genes for plastid RNA polymerase-associated proteins (PAPs). Cytokinin induced the expression of all twelve Arabidopsis thalianaPAP genes irrespective of their functions via canonical CK signaling pathway but this regulation might be indirect taking into consideration their different functions and versatile structure of promoter regions. The disruption of PAP genes contributed to the abolishment of positive CK effect on the accumulation of the chloroplast gene transcripts and transcripts of the nuclear genes for plastid transcription machinery as can be judged from the analysis of pap1 and pap6 mutants. However, the CK regulatory circuit in the mutants remained practically unperturbed. Knock-out of PAP genes resulted in cytokinin overproduction as a consequence of the strong up-regulation of the genes for CK synthesis.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2307
Author(s):  
Luca Tadini ◽  
Nicolaj Jeran ◽  
Paolo Pesaresi

GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Abel Lidón-Soto ◽  
Eva Núñez-Delegido ◽  
Iván Pastor-Martínez ◽  
Pedro Robles ◽  
Víctor Quesada

Plastid gene expression (PGE) must adequately respond to changes in both development and environmental cues. The transcriptional machinery of plastids in land plants is far more complex than that of prokaryotes. Two types of DNA-dependent RNA polymerases transcribe the plastid genome: a multimeric plastid-encoded polymerase (PEP), and a monomeric nuclear-encoded polymerase (NEP). A single NEP in monocots (RPOTp, RNA polymerase of the T3/T7 phage-type) and two NEPs in dicots (plastid-targeted RPOTp, and plastid- and mitochondrial-targeted RPOTmp) have been hitherto identified. To unravel the role of PGE in plant responses to abiotic stress, we investigated if Arabidopsis RPOTp could function in plant salt tolerance. To this end, we studied the sensitivity of T-DNA mutants scabra3-2 (sca3-2) and sca3-3, defective in the RPOTp gene, to salinity, osmotic stress and the phytohormone abscisic acid (ABA) required for plants to adapt to abiotic stress. sca3 mutants were hypersensitive to NaCl, mannitol and ABA during germination and seedling establishment. Later in development, sca3 plants displayed reduced sensitivity to salt stress. A gene ontology (GO) analysis of the nuclear genes differentially expressed in the sca3-2 mutant (301) revealed that many significantly enriched GO terms were related to chloroplast function, and also to the response to several abiotic stresses. By quantitative RT-PCR (qRT-PCR), we found that genes LHCB1 (LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING1) and AOX1A (ALTERNATIVE OXIDASE 1A) were respectively down- and up-regulated in the Columbia-0 (Col-0) salt-stressed plants, which suggests the activation of plastid and mitochondria-to-nucleus retrograde signaling. The transcript levels of genes RPOTp, RPOTmp and RPOTm significantly increased in these salt-stressed seedlings, but this enhanced expression did not lead to the up-regulation of the plastid genes solely transcribed by NEP. Similar to salinity, carotenoid inhibitor norflurazon (NF) also enhanced the RPOTp transcript levels in Col-0 seedlings. This shows that besides salinity, inhibition of chloroplast biogenesis also induces RPOTp expression. Unlike salt and NF, the NEP genes were significantly down-regulated in the Col-0 seedlings grown in ABA-supplemented media. Together, our findings demonstrate that RPOTp functions in abiotic stress tolerance, and RPOTp is likely regulated positively by plastid-to-nucleus retrograde signaling, which is triggered when chloroplast functionality is perturbed by environmental stresses, e.g., salinity or NF. This suggests the existence of a compensatory mechanism, elicited by impaired chloroplast function. To our knowledge, this is the first study to suggest the role of a nuclear-encoded plastid-RNA polymerase in salt stress tolerance in plants.


2020 ◽  
Vol 375 (1801) ◽  
pp. 20190409 ◽  
Author(s):  
Aleksandra Adamowicz-Skrzypkowska ◽  
Malgorzata Kwasniak-Owczarek ◽  
Olivier Van Aken ◽  
Urszula Kazmierczak ◽  
Hanna Janska

Changes in the functional state of mitochondria have profound effects on other cellular compartments. Genome-wide expression analysis of Arabidopsis rps10 mutants with an RNAi-silenced expression of mitoribosomal S10 protein has revealed extensive transcriptional reprogramming. A meta-analysis comparing expression datasets of 25 mitochondrial perturbations showed a high similarity of the aox1a:rpoTmp mutant , which is defective in the alternative oxidase (AOX1a) and dual-targeted mitochondrial and plastid RNA polymerase (RPOTmp), to rps10 . Both rps10 and aox1a:rpoTmp showed a significantly decreased electron flux through both the cytochrome and the alternative respiratory pathways, and a markedly decreased the expression of nuclear-encoded components of the chloroplast transcription machinery. In line with this, a decreased level of plastid transcripts was observed in rps10 and aox1a:rpoTmp , which was reflected in a reduced rate of chloroplast transcription. Chemical treatment of wild-type seedlings with respiratory inhibitors showed that only simultaneous and direct inhibition of complex IV and AOX activity decreased the level of plastid transcripts. Taken together, both chemical and genetic studies show that the limitation of the activity of two mitochondrial terminal oxidases, complex IV and AOX, negatively impacts chloroplast transcription. Salicylic acid and oxygen are discussed as putative mediators of the signalling pathway between mitochondria, nucleus and chloroplasts. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


2020 ◽  
Vol 375 (1801) ◽  
pp. 20190399 ◽  
Author(s):  
Luca Tadini ◽  
Nicolaj Jeran ◽  
Carlotta Peracchio ◽  
Simona Masiero ◽  
Monica Colombo ◽  
...  

Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes ( rpoA , rpoB , rpoC1 and rpoC2 ), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes ( PhANGs ) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1 , in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Sangyool Lee ◽  
Young Hee Joung ◽  
Ju-Kon Kim ◽  
Yang Do Choi ◽  
Geupil Jang

Abstract Background Plastid-encoded RNA polymerase (PEP) plays an essential role in chloroplast development by governing the expression of genes involved in photosynthesis. At least 12 PEP-associated proteins (PAPs), including FSD3/PAP4, regulate PEP activity and chloroplast development by modulating formation of the PEP complex. Results In this study, we identified FSD3S, a splicing variant of FSD3; the FSD3 and FSD3S transcripts encode proteins with identical N-termini, but different C-termini. Characterization of FSD3 and FSD3S proteins showed that the C-terminal region of FSD3S contains a transmembrane domain, which promotes FSD3S localization to the chloroplast membrane but not to nucleoids, in contrast to FSD3, which localizes to the chloroplast nucleoid. We also found that overexpression of FSD3S negatively affects photosynthetic activity and chloroplast development by reducing expression of genes involved in photosynthesis. In addition, FSD3S failed to complement the chloroplast developmental defects in the fsd3 mutant. Conclusion These results suggest FSD3 and FSD3S, with their distinct localization patterns, have different functions in chloroplast development, and FSD3S negatively regulates expression of PEP-dependent chloroplast genes, and development of chloroplasts.


Author(s):  
Sangyool Lee ◽  
Sun Hyun Chang ◽  
Taeyoung Um ◽  
Geupil Jang ◽  
Ju-Kon Kim ◽  
...  

2016 ◽  
Vol 92 (4-5) ◽  
pp. 581-595 ◽  
Author(s):  
Liwei Wang ◽  
Chunming Wang ◽  
Yihua Wang ◽  
Mei Niu ◽  
Yulong Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document