Effect of plant oils on methane emission and biohydrogenation in vitro

2006 ◽  
Vol 1293 ◽  
pp. 180-183 ◽  
Author(s):  
A. Cieślak ◽  
C.R. Soliva ◽  
A. Potkański ◽  
M. Szumacher-Strabel ◽  
M.R.L Scheeder ◽  
...  
Keyword(s):  
BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ahmed M. Senan ◽  
Binru Yin ◽  
Yaoyao Zhang ◽  
Mustapha M. Nasiru ◽  
Yong‐Mei Lyu ◽  
...  

AbstractWith the increasing demand for antimicrobial agents and the spread of antibiotic resistance in pathogens, the exploitation of plant oils to partly replace antibiotic emerges as an important source of fine chemicals, functional food utility and pharmaceutical industries. This work introduces a novel catalytic method of plant oils hydroxylation by Fe(III) citrate monohydrate (Fe3+-cit.)/Na2S2O8 catalyst. Methyl (9Z,12Z)-octadecadienoate (ML) was selected as an example of vegetable oils hydroxylation to its hydroxy-conjugated derivatives (CHML) in the presence of a new complex of Fe(II)-species. Methyl 9,12-di-hydroxyoctadecanoate 1, methyl-9-hydroxyoctadecanoate 2 and methyl (10E,12E)-octadecanoate 3 mixtures is produced under optimized condition with oxygen balloon. The specific hydroxylation activity was lower in the case of using Na2S2O8 alone as a catalyst. A chemical reaction has shown the main process converted of plantoils hydroxylation and (+ 16 Da) of OH- attached at the methyl linoleate (ML-OH). HPLC and MALDI-ToF-mass spectrometry were employed for determining the obtained products. It was found that adding oxidizing agents (Na2S2O8) to Fe3+ in the MeCN mixture with H2O would generate the new complex of Fe(II)-species, which improves the C-H activation. Hence, the present study demonstrated a new functional method for better usage of vegetable oils.Producing conjugated hydroxy-fatty acids/esters with better antipathogenic properties. CHML used in food industry, It has a potential pathway to food safety and packaging process with good advantages, fundamental to microbial resistance. Lastly, our findings showed that biological monitoring of CHML-minimum inhibitory concentration (MIC) inhibited growth of various gram-positive and gram-negative bacteria in vitro study. The produced CHML profiles were comparable to the corresponding to previousstudies and showed improved the inhibition efficiency over the respective kanamycin derivatives.


2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


2006 ◽  
Vol 129 (3-4) ◽  
pp. 175-186 ◽  
Author(s):  
B. Pen ◽  
C. Sar ◽  
B. Mwenya ◽  
K. Kuwaki ◽  
R. Morikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document