Infrared spectroscopy combined with chemometrics as a convenient method to detect adulterations in cooking/stretching process in commercial cheese

2022 ◽  
pp. 105312
Author(s):  
Mustafa Ozturk ◽  
Muhammed Ali Dogan ◽  
Ahmed Menevseoglu ◽  
Huseyin Ayvaz
Author(s):  
M.D. Ball ◽  
H. Lagace ◽  
M.C. Thornton

The backscattered electron coefficient η for transmission electron microscope specimens depends on both the atomic number Z and the thickness t. Hence for specimens of known atomic number, the thickness can be determined from backscattered electron coefficient measurements. This work describes a simple and convenient method of estimating the thickness and the corrected composition of areas of uncertain atomic number by combining x-ray microanalysis and backscattered electron intensity measurements.The method is best described in terms of the flow chart shown In Figure 1. Having selected a feature of interest, x-ray microanalysis data is recorded and used to estimate the composition. At this stage thickness corrections for absorption and fluorescence are not performed.


Author(s):  
W. C. T. Dowell

Stereo imaging is not new to electron microscopy. Von Ardenne, who first published transmission pairs nearly forty hears ago, himself refers to a patent application by Ruska in 1934. In the early days of the electron microscope von Ardenne employed a pair of magnetic lenses to view untilted specimens but soon opted for the now standard technique of tilting the specimen with respect to the beam.In the shadow electron microscope stereo images can, of course, be obtained by tilting the specimen between micrographs. This obvious method suffers from the disadvantage that the magnification is very sensitive to small changes in specimen height which accompany tilting in the less sophisticated stages and it is also time consuming. A more convenient method is provided by horizontally displacing the specimen between micrographs. The specimen is not tilted and the technique is both simple and rapid, stereo pairs being obtained in less than thirty seconds.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


1997 ◽  
Vol 90 (3) ◽  
pp. 495-497
Author(s):  
CLAUDIO ESPOSTI ◽  
FILIPPO TAMASSIA ◽  
CRISTINA PUZZARINI ◽  
RICCARDO TARRONI ◽  
ZDENEK ZELINGER

Agronomie ◽  
2001 ◽  
Vol 21 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Giovanni Gigliotti ◽  
Pier Lodovico Giusquiani ◽  
Daniela Businelli

Sign in / Sign up

Export Citation Format

Share Document