scholarly journals Finite-dimensional Adaptive Error Feedback Output Regulation for 1D Wave Equation * *This work was supported by the National Natural Science Foundation of China (61374088)

2017 ◽  
Vol 50 (1) ◽  
pp. 9192-9197 ◽  
Author(s):  
Wei Guo ◽  
Miroslav Krstic
Author(s):  
Zhiyuan Li ◽  
Feng-Fei Jin

This paper is concerned with the boundary error feedback regulation for a one-dimensional anti-stable wave equation with distributed disturbance generated by a finite-dimensional exogenous system. Transport equation and regulator equation are introduced first to deal with the anti-damping on boundary and the distributed disturbance of the original system. Then, the tracking error and its derivative are measured to design an observer for both exosystem and auxiliary partial differential equation (PDE) system to recover the state. After proving the well-posedness of the regulator equations, we propose an observer-based controller to regulate the tracking error to zero exponentially and keep the states of all the internal loop uniformly bounded. Finally, some numerical simulations are presented to validate the effectiveness of the proposed controller.


2018 ◽  
Vol 41 (1) ◽  
pp. 246-262 ◽  
Author(s):  
Jianjun Gu ◽  
Chunqiu Wei ◽  
Junmin Wang

Output regulation is considered in this paper for ordinary differential equations cascaded by a wave equation, in which both the body equations and the uncontrolled end are subject to disturbances. The disturbances are generated by an exosystem. A backstepping state-feedback regulator is first designed to force the output to track the reference signal. The design is based on solving cascaded regulator equations, and the solvability condition of the equations is characterized in terms of a transfer function and the eigenvalues of the exosystem. An observer-based output-feedback regulator is then designed to solve the output regulation problem. Finally, the regulator tracking performance is illustrated through numerical simulations.


2020 ◽  
Vol 20 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Suzhen Jiang ◽  
Kaifang Liao ◽  
Ting Wei

AbstractIn this study, we consider an inverse problem of recovering the initial value for a multi-dimensional time-fractional diffusion-wave equation. By using some additional boundary measured data, the uniqueness of the inverse initial value problem is proven by the Laplace transformation and the analytic continuation technique. The inverse problem is formulated to solve a Tikhonov-type optimization problem by using a finite-dimensional approximation. We test four numerical examples in one-dimensional and two-dimensional cases for verifying the effectiveness of the proposed algorithm.


2003 ◽  
Vol 2003 (8) ◽  
pp. 409-427 ◽  
Author(s):  
Robert Willie

We study the effects of large diffusivity in all parts of the domain in a linearly damped wave equation subject to standard zero Robin-type boundary conditions. In the linear case, we show in a given sense that the asymptotic behaviour of solutions verifies a second-order ordinary differential equation. In the semilinear case, under suitable dissipative assumptions on the nonlinear term, we prove the existence of a global attractor for fixed diffusion and that the limiting attractor for large diffusion is finite dimensional.


Sign in / Sign up

Export Citation Format

Share Document