scholarly journals Discrete Time Quasi Sliding Mode Control For Piezo-Actuated Positioning Systems: A Prescribed Performance Control Approach

2017 ◽  
Vol 50 (1) ◽  
pp. 5121-5126 ◽  
Author(s):  
L.M. Nguyen ◽  
X. Chen
2020 ◽  
Vol 10 (14) ◽  
pp. 4779 ◽  
Author(s):  
Cheng Lu ◽  
Liang Hua ◽  
Xinsong Zhang ◽  
Huiming Wang ◽  
Yunxiang Guo

This paper investigates one kind of high performance control methods for Micro-Electro-Mechanical-System (MEMS) gyroscopes using adaptive sliding mode control (ASMC) scheme with prescribed performance. Prescribed performance control (PPC) method is combined with conventional ASMC method to provide quantitative analysis of gyroscope tracking error performances in terms of specified tracking error bound and specified error convergence rate. The new derived adaptive prescribed performance sliding mode control (APPSMC) can maintain a satisfactory control performance which guarantees system tracking error, at any time, to be within a predefined error bound and the error convergences faster than the error bound. Besides, adaptive control (AC) technique is integrated with PPC to online tune controller parameters, which will converge to their true values at last. The stability of the control system is proved in the Lyapunov stability framework and simulation results on a Z-axis MEMS gyroscope is conducted to validate the effectiveness of the proposed control approach.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2051
Author(s):  
Javier Velasco ◽  
Isidro Calvo ◽  
Oscar Barambones ◽  
Pablo Venegas ◽  
Cristian Napole

The authors introduce a new controller, aimed at industrial domains, that improves the performance and accuracy of positioning systems based on Stewart platforms. More specifically, this paper presents, and validates experimentally, a sliding mode control for precisely positioning a Stewart platform used as a mobile platform in non-destructive inspection (NDI) applications. The NDI application involves exploring the specimen surface of aeronautical coupons at different heights. In order to avoid defocusing and blurred images, the platform must be positioned accurately to keep a uniform distance between the camera and the surface of the specimen. This operation requires the coordinated control of the six electro mechanic actuators (EMAs). The platform trajectory and the EMA lengths can be calculated by means of the forward and inverse kinematics of the Stewart platform. Typically, a proportional integral (PI) control approach is used for this purpose but unfortunately this control scheme is unable to position the platform accurately enough. For this reason, a sliding mode control (SMC) strategy is proposed. The SMC requires: (1) a priori knowledge of the bounds on system uncertainties, and (2) the analysis of the system stability in order to ensure that the strategy executes adequately. The results of this work show a higher performance of the SMC when compared with the PI control strategy: the average absolute error is reduced from 3.45 mm in PI to 0.78 mm in the SMC. Additionally, the duty cycle analysis shows that although PI control demands a smoother actuator response, the power consumption is similar.


2018 ◽  
Vol 36 (3) ◽  
pp. 901-919 ◽  
Author(s):  
Rong Li ◽  
Qingxian Wu

Abstract This paper investigates a class of uncertain linear discrete-time systems subject to input rate saturation. A predictive sliding mode control approach is proposed which guarantees the control inputs remain bounded in the input rate saturation. Furthermore, the disturbance observer is developed to compensate for the system uncertainty and disturbance. Finally, the simulations demonstrate the effectiveness of the proposed predictive sliding mode control scheme.


Sign in / Sign up

Export Citation Format

Share Document