scholarly journals Model-based Dependability Analysis of Fault-tolerant Inertial Navigation System: A Practical Experience Report

2019 ◽  
Vol 52 (12) ◽  
pp. 394-399 ◽  
Author(s):  
Mikael Steurer ◽  
Andrey Morozov ◽  
Klaus Janschek ◽  
Klaus-Peter Neitzke
1995 ◽  
Vol 48 (1) ◽  
pp. 114-135 ◽  
Author(s):  
A. Svensson ◽  
J. Holst

This article treats integration of navigation data from a variety of sensors in a submarine using extended Kalman filtering in order to improve the accuracy of position, velocity and heading estimates. The problem has been restricted to planar motion. The measurement system consists of an inertial navigation system, a gyro compass, a passive log, an active log and a satellite navigation system. These subsystems are briefly described and models for the measurement errors are given.Four different extended Kalman filters have been tested by computer simulations. The simulations distinctly show that the passive subsystems alone are insufficient to improve the estimate of the position obtained from the inertial navigation system. A log measuring the velocity relative to the ground or a position determining system are needed. The improvement depends on the accuracy of the measuring instruments, the extent of time the instrument can be used and which filter is being used. The most complex filter, which contains fourteen states, eight to describe the motion of the submarine and six to describe the measurement system, including a model of the inertial navigation system, works very well.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2911 ◽  
Author(s):  
Ling Zhang ◽  
Yuchen Cui ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Jizhou Lai ◽  
...  

In order to obtain accurate and optimized navigation sensor information, it is necessary to study information fusion and fault diagnosis with high reliability, high precision and high autonomy, and then to propose a rapid and accurate intelligent decision-making scheme based on multi-source and heterogeneous navigation information. In view of the existing fault-tolerant navigation federated filter structure, the method of assuming the reference system (inertial navigation system) to be fault-free and then diagnosing the measuring sensor fault is generally adopted. Considering that the structure of the filter can’t detect and isolate the faults of the inertial navigation system, the performance of the MEMS inertial navigation system declines due to complex environments resulting from vibrations and temperature changes; additionally, external interference may lead to the direct failure of the MEMS inertial device. Therefore, this paper studies a fault-tolerant navigation method based on a no-reference system. For the sensor sub-system of a custom micro air vehicle (MAV), a fault detection method based on a reference-free system is proposed. Based on the fault type analysis, some improvements have been made to the existing residual chi-square detection method, and an interactive residual fault detection method with distributed states is proposed. On this basis, aiming at the characteristics of a reference-free system, the weight distribution scheme of the reference system and the tested systems are studied, and a self-regulation filter fusion and fault detection method based on reference-free system is designed.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoqiang Dai ◽  
Lin Zhao ◽  
Zhen Shi

Conventional fault detection and isolation technology cannot fully ensure system redundancy features when sensors experience drift in a redundant inertial navigation system. A new fault tolerant control method employs state estimation and state feedback techniques to compensate the sensor drift. However, the method is sensitive to measurement noise characteristics, and the performance of the method nearly depends on the feedback gain. This paper proposes an improved fault tolerant control algorithm, which employs an adaptive extended Kalman particle filter (AEKPF) to deal with unknown noise characteristics and model inaccuracies. In addition, a drift factor is introduced in the improved fault tolerant controlin order to reduce the dependence of compensation system on the feedback gain. Simulation results show that the improved fault tolerant control algorithm can effectively correct the faulty sensor even when the multiple erroneous sensors are producing faulty outputs simultaneously. Meanwhile, the AEKPF is able to solve the problem of unknown non-Gaussian noise characteristics. Moreover, the feedback gain is significantly improved by the drift factor.


Sign in / Sign up

Export Citation Format

Share Document