scholarly journals Polynomial Chaos-Based Flight Control Optimization with Guaranteed Probabilistic Performance

2020 ◽  
Vol 53 (2) ◽  
pp. 7274-7279
Author(s):  
Dalong Shi ◽  
Xiang Fang ◽  
Florian Holzapfel
2021 ◽  
Vol 6 (2) ◽  
pp. 2044-2051
Author(s):  
Danial Sufiyan ◽  
Luke Soe Thura Win ◽  
Shane Kyi Hla Win ◽  
Gim Song Soh ◽  
Shaohui Foong

2019 ◽  
Author(s):  
Dominic Keidel ◽  
Urban Fasel ◽  
Giulio Molinari ◽  
Paolo Ermanni

2018 ◽  
Vol 29 (20) ◽  
pp. 3847-3872 ◽  
Author(s):  
Giulio Molinari ◽  
Andres F Arrieta ◽  
Paolo Ermanni

Tailless swept wing airplanes rely on variations of the spanwise lift distribution to achieve controllability in all axes. As every flight condition requires different control moments, the conventional discrete control surfaces will be practically continuously deflected, leading to drag penalties. Shape adaptation base on chordwise morphing can achieve continuous deformations of the wing profile, leading to local lift variations with minimum drag penalties. As the shape is varied continuously along the wingspan, the lift distribution can be tailored to each flight condition. Tailless aircraft appear therefore as prime candidates for morphing, as the attainable benefits are potentially significant. This work presents a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by piezoelectric elements. The multidisciplinary optimization considers the static and dynamic aeroelastic behavior of the structure and aims to maximize the aerodynamic efficiency of the plane while guaranteeing its controllability by means of morphing. The potential of the resulting wing design is fully exploited by means of a second optimization process, which identifies the actuation configuration resulting in the highest aerodynamic efficiency for a wide variety of control moments.


2017 ◽  
Vol 7 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Robert J. de Boer ◽  
Karel Hurts

Abstract. Automation surprise (AS) has often been associated with aviation safety incidents. Although numerous laboratory studies have been conducted, few data are available from routine flight operations. A survey among a representative sample of 200 Dutch airline pilots was used to determine the prevalence of AS and the severity of its consequences, and to test some of the factors leading to AS. Results show that AS is a relatively widespread phenomenon that occurs three times per year per pilot on average but rarely has serious consequences. In less than 10% of the AS cases that were reviewed, an undesired aircraft state was induced. Reportable occurrences are estimated to occur only once every 1–3 years per pilot. Factors leading to a higher prevalence of AS include less flying experience, increasing complexity of the flight control mode, and flight duty periods of over 8 hr. It is concluded that AS is a manifestation of system and interface complexity rather than cognitive errors.


Sign in / Sign up

Export Citation Format

Share Document