Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations

2017 ◽  
Vol 105 ◽  
pp. 1663-1669 ◽  
Author(s):  
Lin Gou ◽  
Jinhyuk Lee ◽  
Jun-Mo Yang ◽  
Yong-Doo Park ◽  
Hai-Meng Zhou ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1613
Author(s):  
Giulia D’Arrigo ◽  
Eleonora Gianquinto ◽  
Giulia Rossetti ◽  
Gabriele Cruciani ◽  
Stefano Lorenzetti ◽  
...  

Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17β-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERβ, ERRβ, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein–ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.


2018 ◽  
Vol 112 ◽  
pp. 686-693 ◽  
Author(s):  
Li Zheng ◽  
Jinhyuk Lee ◽  
Li-Mei Yue ◽  
Gyu Tae Lim ◽  
Jun-Mo Yang ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 777
Author(s):  
Iris S. Teixeira ◽  
André B. Farias ◽  
Bruno A. C. Horta ◽  
Humberto M. S. Milagre ◽  
Rodrigo O. M. A. de Souza ◽  
...  

Amine transaminases (ATAs) are pyridoxal-5′-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,β-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,β-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results.


1999 ◽  
Vol 42 (18) ◽  
pp. 3436-3446 ◽  
Author(s):  
Shaomeng Wang ◽  
Ming Liu ◽  
Nancy E. Lewin ◽  
Patricia S. Lorenzo ◽  
Dipak Bhattacharrya ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 531-543
Author(s):  
Christos Deligkaris ◽  
Evan Millam

We identify physical binding sites found via free energy minimization in computational docking simulations. These structures represent local potential energy minima in this system and suggest plausible sites for adduct formation.


Sign in / Sign up

Export Citation Format

Share Document