scholarly journals A review on cationic starch and nanocellulose as paper coating components

2020 ◽  
Vol 162 ◽  
pp. 578-598 ◽  
Author(s):  
Mohit Sharma ◽  
Roberto Aguado ◽  
Dina Murtinho ◽  
Artur J.M. Valente ◽  
António P. Mendes De Sousa ◽  
...  
2011 ◽  
Vol 287-290 ◽  
pp. 2074-2077
Author(s):  
Quan Xiao Liu ◽  
Jin Li Li ◽  
Wen Cai Xu ◽  
Yu Bin Lv

Different degrees of high degree of substitution cationic starch (HCS) were prepared and applied in paper coating. Effects of HCS on coating properties and coated paper properties were investigated, and the comparison of effects of HCS and PDMDAAC was made. The results show that the best amount of HCS in coating formula is between 2% and 4%. When the amount of HCS is 4%, whiteness of coated paper was the highest. The color density was the highest when the amount of HCS is about 4% and the degree of substitution is 0.64. HCS with degree of substitution 0.849 is better than PDMDAAC in some respects, and the print image density achieved satisfactorily.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


2006 ◽  
Vol 60 (12) ◽  
pp. 1776-1785
Author(s):  
Koji Okomori
Keyword(s):  

2021 ◽  
Vol 253 ◽  
pp. 117230 ◽  
Author(s):  
Sirinan Lawchoochaisakul ◽  
Pathavuth Monvisade ◽  
Punnama Siriphannon

Cellulose ◽  
2021 ◽  
Vol 28 (15) ◽  
pp. 9751-9768
Author(s):  
Teija Laukala ◽  
Sami-Seppo Ovaska ◽  
Ninja Kerttula ◽  
Kaj Backfolk

AbstractThe effects of bio-based strengthening agents and mineral filling procedure on the 3D elongation of chemi-thermomechanical pulp (CTMP) handsheets with and without mineral (PCC) filling have been investigated. The 3D elongation was measured using a press-forming machine equipped with a special converting tool. The strength of the handsheets was altered using either cationic starch or microfibrillated cellulose. Precipitated calcium carbonate (PCC) was added to the furnish either as a slurry or by precipitation of nano-sized PCC onto and into the CTMP fibre. The 3D elongation of unfilled sheets was increased by the dry-strengthening agents, but no evidence on the theorised positive effect of mineral fill on 3D elongation was seen in either filling method. The performance of the strengthening agent depended on whether the PCC was as slurry or as a precipitated PCC-CTMP. The starch was more effective with PCC-CTMP than when the PCC was added directly as a slurry to the furnish, whereas the opposite was observed with microfibrillated cellulose. The 3D elongation correlated positively with the tensile strength, bursting strength, tensile stiffness, elastic modulus and bending stiffness, even when the sheet composition was varied, but neither the strengthening agent nor the method of PCC addition affected the 3D elongation beyond what was expectable based on the tensile strength of the sheets. Finally, mechanisms affecting the properties that correlated with the 3D elongation are discussed.


Sign in / Sign up

Export Citation Format

Share Document