Effect of carbohydrate binding modules alterations on catalytic activity of glycoside hydrolase family 6 exoglucanase from Chaetomium thermophilum to cellulose

2021 ◽  
Vol 191 ◽  
pp. 222-229
Author(s):  
Yanmei Hu ◽  
Huanan Li ◽  
Qiuping Ran ◽  
Jiashu Liu ◽  
Shanna Zhou ◽  
...  
2008 ◽  
Vol 410 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Elien Vandermarliere ◽  
Tine M. Bourgois ◽  
Sigrid Rombouts ◽  
Steven van Campenhout ◽  
Guido Volckaert ◽  
...  

GH 11 (glycoside hydrolase family 11) xylanases are predominant enzymes in the hydrolysis of heteroxylan, an abundant structural polysaccharide in the plant cell wall. To gain more insight into the protein–ligand interactions of the glycone as well as the aglycone subsites of these enzymes, catalytically incompetent mutants of the Bacillus subtilis and Aspergillus niger xylanases were crystallized, soaked with xylo-oligosaccharides and subjected to X-ray analysis. For both xylanases, there was clear density for xylose residues in the −1 and −2 subsites. In addition, for the B. subtilis xylanase, there was also density for xylose residues in the −3 and +1 subsite showing the spanning of the −1/+1 subsites. These results, together with the observation that some residues in the aglycone subsites clearly adopt a different conformation upon substrate binding, allowed us to identify the residues important for substrate binding in the aglycone subsites. In addition to substrate binding in the active site of the enzymes, the existence of an unproductive second ligand-binding site located on the surface of both the B. subtilis and A. niger xylanases was observed. This extra binding site may have a function similar to the separate carbohydrate-binding modules of other glycoside hydrolase families.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1011
Author(s):  
Paripok Phitsuwan ◽  
Sengthong Lee ◽  
Techly San ◽  
Khanok Ratanakhanokchai

Glycoside hydrolase family 9 (GH9) endoglucanases are important enzymes for cellulose degradation. However, their activity on cellulose is diverse. Here, we cloned and expressed one GH9 enzyme (CalkGH9T) from Clostridium alkalicellulosi in Escherichia coli. CalkGH9T has a modular structure, containing one GH9 catalytic module, two family 3 carbohydrate binding modules, and one type I dockerin domain. CalkGH9T exhibited maximal activity at pH 7.0–8.0 and 55 °C and was resistant to urea and NaCl. It efficiently hydrolyzed carboxymethyl cellulose (CMC) but poorly degraded regenerated amorphous cellulose (RAC). Despite strongly binding to Avicel, CalkGH9T lacked the ability to hydrolyze this substrate. The hydrolysis of CMC by CalkGH9T produced a series of cello-oligomers, with cellotetraose being preferentially released. Similar proportions of soluble and insoluble reducing ends generated by hydrolysis of RAC indicated non-processive activity. Our study extends our knowledge of the molecular mechanism of cellulose hydrolysis by GH9 family endoglucanases with industrial relevance.


2005 ◽  
Vol 388 (3) ◽  
pp. 949-957 ◽  
Author(s):  
Masashi KIYOHARA ◽  
Keishi SAKAGUCHI ◽  
Kuniko YAMAGUCHI ◽  
Toshiyoshi ARAKI ◽  
Takashi NAKAMURA ◽  
...  

We cloned a novel β-1,3-xylanase gene, consisting of a 1728-bp open reading frame encoding 576 amino acid residues, from a marine bacterium, Vibrio sp. strain AX-4. Sequence analysis revealed that the β-1,3-xylanase is a modular enzyme composed of a putative catalytic module belonging to glycoside hydrolase family 26 and two putative carbohydrate-binding modules belonging to family 31. The recombinant enzyme hydrolysed β-1,3-xylan to yield xylo-oligosaccharides with different numbers of xylose units, mainly xylobiose, xylotriose and xylotetraose. However, the enzyme did not hydrolyse β-1,4-xylan, β-1,4-mannan, β-1,4-glucan, β-1,3-xylobiose or p-nitrophenyl-β-xyloside. When β-1,3-xylo-oligosaccharides were used as the substrate, the kcat value of the enzyme for xylopentaose was found to be 40 times higher than that for xylotetraose, and xylotriose was extremely resistant to hydrolysis by the enzyme. A PSI-BLAST search revealed two possible catalytic Glu residues (Glu-138 as an acid/base catalyst and Glu-234 as a nucleophile), both of which are generally conserved in glycoside hydrolase superfamily A. Replacement of these two conserved Glu residues with Asp and Gln resulted in a significant decrease and complete loss of enzyme activity respectively, without a change in their CD spectra, suggesting that these Glu residues are the catalytic residues of β-1,3-xylanase. The present study also clearly shows that the non-catalytic putative carbohydrate-binding modules play an important role in the hydrolysis of insoluble β-1,3-xylan, but not that of soluble glycol-β-1,3-xylan. Furthermore, repeating a putative carbohydrate-binding module strongly enhanced the hydrolysis of the insoluble substrate.


Author(s):  
Benjamin Pluvinage ◽  
Craig S. Robb ◽  
Roderick Jeffries ◽  
Alisdair B. Boraston

The recently identified marine bacterium Pseudoalteromonas fuliginea sp. PS47 possesses a polysaccharide-utilization locus dedicated to agarose degradation. In particular, it contains a gene (locus tag EU509_06755) encoding a β-agarase that belongs to glycoside hydrolase family 50 (GH50), PfGH50B. The 2.0 Å resolution X-ray crystal structure of PfGH50B reveals a rare complex multidomain fold that was found in two of the three previously determined GH50 structures. The structure comprises an N-terminal domain with a carbohydrate-binding module (CBM)-like fold fused to a C-terminal domain by a rigid linker. The CBM-like domain appears to function by extending the catalytic groove of the enzyme. Furthermore, the PfGH50B structure highlights key structural features in the mobile loops that may function to restrict the degree of polymerization of the neoagaro-oligosaccharide products and the enzyme processivity.


Author(s):  
Puangpen Limsakul ◽  
Paripok Phitsuwan ◽  
Rattiya Waeonukul ◽  
Patthra Pason ◽  
Chakrit Tachaapaikoon ◽  
...  

The PcAxy43B is a modular protein comprising a catalytic domain of glycoside hydrolase family 43 (GH43), a family 6 carbohydrate-binding module (CBM6) and a family 36 carbohydrate-binding module (CBM36) and found to be a novel multifunctional xylanolytic enzyme from Paenibacillus curdlanolyticus B-6. This enzyme exhibited α-L-arabinofuranosidase, endo-xylanase and β-D-xylosidase activities. α-L-Arabinofuranosidase of PcAxy43B revealed the new property of GH43, which released arabinose from the short-chain arabinoxylo-oligosaccharide (AXOS) and cereal arabinoxylan, and from both sides of the xylose residues of AXOS, which usually obstruct the action of xylanolytic enzymes. The PcAxy43B liberated series of xylo-oligosaccharides (XOSs) from birchwood xylan and xylohexaose, indicating that PcAxy43B exhibited endo-xylanase activity. The PcAxy43B produced xylose from xylobiose and reacted with p -nitrophenyl-β-D-xylopyranoside as a result of β-xylosidase activity. The PcAxy43B effectively released arabinose together with XOSs and xylose from the highly arabinosyl-substituted rye arabinoxylan. Moreover, PcAxy43B showed significant synergistic action with a trifunctional endo-xylanase/β-xylosidase/α-L-arabinofuranosidase PcAxy43A and an endo-xylanase Xyn10C from the strain B-6, in which almost all products produced from rye arabinoxylan by these combined enzymes were arabinose and xylose. In addition, the presence of CBM36 was found to be necessary for the endo-xylanase property of PcAxy43B. The PcAxy43B is capable of hydrolysing untreated cereal biomass, corn hull and rice straw into XOSs and xylose. Hence, PcAxy43B, the significant accessory multifunctional xylanolytic enzyme, is a potential candidate for application in the saccharification of cereal biomass. IMPORTANCE Enzymatic saccharification of cereal biomass is a strategy for the production of fermented sugars from low-price raw materials. In the present study, PcAxy43B from P. curdlanolyticus B-6 was found to be a novel multifunctional α-L-arabinofuranosidase/endo-xylanase/β-D-xylosidase enzyme of the glycoside hydrolase family 43. It is effective in releasing arabinose, xylose and XOSs from the highly arabinosyl-substituted rye arabinoxylan, which is usually resistant to hydrolysis by xylanolytic enzymes. Moreover, almost all products produced from rye arabinoxylan by the combination of PcAxy43B with trifunctional xylanolytic enzyme PcAxy43A and endo-xylanase Xyn10C from the strain B-6 were arabinose and xylose, which can be used to produce several value-added products. In addition, PcAxy43B is capable of hydrolysing untreated cereal biomass into XOSs and xylose. Thus, PcAxy43B is an important multifunctional xylanolytic enzyme with high potential in biotechnology.


2009 ◽  
Vol 418 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Elien Vandermarliere ◽  
Tine M. Bourgois ◽  
Martyn D. Winn ◽  
Steven van Campenhout ◽  
Guido Volckaert ◽  
...  

AXHs (arabinoxylan arabinofuranohydrolases) are α-L-arabinofuranosidases that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis was recently shown to produce an AXH that cleaves arabinose units from O-2- or O-3-mono-substituted xylose residues: BsAXH-m2,3 (B. subtilis AXH-m2,3). Crystallographic analysis reveals a two-domain structure for this enzyme: a catalytic domain displaying a five-bladed β-propeller fold characteristic of GH (glycoside hydrolase) family 43 and a CBM (carbohydrate-binding module) with a β-sandwich fold belonging to CBM family 6. Binding of substrate to BsAXH-m2,3 is largely based on hydrophobic stacking interactions, which probably allow the positional flexibility needed to hydrolyse both arabinose substituents at the O-2 or O-3 position of the xylose unit. Superposition of the BsAXH-m2,3 structure with known structures of the GH family 43 exo-acting enzymes, β-xylosidase and α-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone.


2010 ◽  
Vol 192 (8) ◽  
pp. 2210-2219 ◽  
Author(s):  
Mutsumi Fukuda ◽  
Seiji Watanabe ◽  
Shigeki Yoshida ◽  
Hiroya Itoh ◽  
Yoshifumi Itoh ◽  
...  

ABSTRACT Paenibacillus sp. W-61 is capable of utilizing water-insoluble xylan for carbon and energy sources and has three xylanase genes, xyn1, xyn3, and xyn5. Xyn1, Xyn3, and Xyn5 are extracellular enzymes of the glycoside hydrolase (GH) families 11, 30, and 10, respectively. Xyn5 contains several domains including those of carbohydrate-binding modules (CBMs) similar to a surface-layer homologous (SLH) protein. This study focused on the role of Xyn5, localized on the cell surface, in water-insoluble xylan utilization. Electron microscopy using immunogold staining revealed Xyn5 clusters over the entire cell surface. Xyn5 was bound to cell wall fractions through its SLH domain. A Δxyn5 mutant grew poorly and produced minimal amounts of Xyn1 and Xyn3 on water-insoluble xylan. A Xyn5 mutant lacking the SLH domain (Xyn5ΔSLH) grew poorly, secreting Xyn5ΔSLH into the medium and producing minimal Xyn1 and Xyn3 on water-insoluble xylan. A mutant with an intact xyn5 produced Xyn5 on the cell surface, grew normally, and actively synthesized Xyn1 and Xyn3 on water-insoluble xylan. Quantitative reverse transcription-PCR showed that xylobiose, generated from water-insoluble xylan decomposition by Xyn5, is the most active inducer for xyn1 and xyn3. Luciferase assays using a Xyn5-luciferase fusion protein suggested that xylotriose is the best inducer for xyn5. The cell surface Xyn5 appears to play two essential roles in water-insoluble xylan utilization: (i) generation of the xylo-oligosaccharide inducers of all the xyn genes from water-insoluble xylan and (ii) attachment of the cells to the substrate so that the generated inducers can be immediately taken up by cells to activate expression of the xyn system.


Sign in / Sign up

Export Citation Format

Share Document