General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: Analytical and experimental approach

2010 ◽  
Vol 48 (10) ◽  
pp. 921-935 ◽  
Author(s):  
Mohammad A. AL-Shudeifat ◽  
Eric A. Butcher ◽  
Carl R. Stern
1996 ◽  
Vol 40 (04) ◽  
pp. 316-325
Author(s):  
J. C. Peyton Jones ◽  
I. Cankaya

Algebraic expressions are presented which enable the harmonic balance equations to be written down directly in terms of the coefficients of a general nonlinear ship roll equation, without restriction on the number of harmonics considered. The rolling response is then readily computed, as illustrated by an investigation of the resonant modes of ships with angle-dependent cubic damping, or quintic terms in the righting moment. Details are also given of the validation process, showing how simulation time can be reduced by an appropriate choice of initial conditions.


Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.


2013 ◽  
Vol 32 ◽  
pp. 1-14
Author(s):  
M Saifur Rahman ◽  
M Majedur Rahman ◽  
M Sajedur Rahaman ◽  
M Shamsul Alam

A modified harmonic balance method is employed to determine the second approximate solutions to a coupled nonlinear differential equation near the limit cycle. The solution shows a good agreement with the numerical solution. DOI: http://dx.doi.org/10.3329/ganit.v32i0.13640 GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 32 (2012) 1 – 14


Author(s):  
Qinkai Han ◽  
Fulei Chu

Unbalanced response of cracked rotor-bearing system under time-dependent base movements is studied in this paper. Three base angular motions, including the rolling, pitching and yawing motions, are assumed to be sinusoidal perturbations superimposed upon constant terms. Both the open and breathing transverse cracks are considered in the analysis. The finite element model is established for the base excited rotor-bearing system with open or breathing cracks. Considering the time-varying base movements and transverse cracks, the second order differential equations of the system will not only have time-periodic gyroscopic and stiffness coefficients, but also the multi-frequency external excitations. An improved harmonic balance method is introduced to obtain the steady-state response of the system under both base and unbalance excitations. The whirling frequencies of the equivalent time-invariant system, orbits of shaft center, response spectra and frequency response characteristics, are analyzed accordingly. The effects of various base angular motions, frequency and amplitude of base excitations, and crack depths on the system dynamic behaviors are considered in the discussions.


Author(s):  
Zhiwei Liu ◽  
Yuefang Wang

Many rotor assemblies of industrial turbomachines are supported by oil-lubricated bearings. It is well known that the operation safety of these machines is highly dependent on rotors whose stability is closely related to the whirling motion of lubricant oil. In this paper, the problem of transverse motion of rotor systems considering bearing nonlinearity is revisited. A symmetric, rigid Jeffcott rotor is modeled considering unbalanced mass and short bearing forces. A semi-analytical, seminumerical approach is presented based on the generalized harmonic balance method (GHBM) and the Newton–Raphson iteration scheme. The external load of the system is decomposed into a Fourier series with multiple harmonic loads. The amplitude and phase with respect to each harmonic load are solved iteratively. The stability of the motion response is analyzed through identification of eigenvalues at the fixed point mapped from the linearized system using harmonic amplitudes. The solutions of the present approach are compared to those from time-domain numerical integrations using the Runge–Kutta method, and they are found to be in good agreement for stable periodic motions. It is revealed through bifurcation analysis that evolution of the motion in the nonlinear rotor-bearing system is complicated. The Hopf bifurcation (HB) of synchronous vibration initiates oil whirl with varying mass eccentricity. The onset of oil whip is identified when the saddle-node bifurcation of subsynchronous vibration takes place at the critical value of parameter.


Sign in / Sign up

Export Citation Format

Share Document