Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force

2015 ◽  
Vol 90 ◽  
pp. 58-75 ◽  
Author(s):  
M. Shaat ◽  
A. Abdelkefi
2013 ◽  
Vol 1493 ◽  
pp. 201-206
Author(s):  
Rubana Bahar Priti ◽  
Venkat Bommisetty

ABSTRACTHydrogenated nanocrystalline silicon (nc-Si:H) is a promising absorber material for photovoltaic applications. Nanoscale electrical conductivity and overall electronic quality of this material are significantly affected by film microstructure, specifically the density and dimension of grains and grain-boundaries (GB). Local charge distribution at grains and grain/GB interfaces of nc-Si:H was studied by Electrostatic Force Microscopy (EFM) in constant force mode under illumination of white LED. Bias voltage from -3V to +3V was applied on the tip. Scanning Kelvin Force (KFM) images were taken before and after illumination to study the change in surface photovoltage (SP). EFM and KFM analysis were combined with film topography to draw a correlation between surface morphology and nanoscale charge distribution in this material. After illumination, small blister like structures were observed whose size and density increase with time. Raman spectroscopy confirmed these new structures as nanocrystalline silicon. This change was assumed due to relaxation of strained Si-Si bonds as an effect of photo response. Nanocrystalline grain interiors were at lower potential and amorphous grain boundaries were at higher potential for negative bias; it was opposite for positive bias. Change in polarity in bias voltage reversed the polarity of the potential in grains and GBs indicating the dominance of negative type of defects. Further study with current sensing AFM in dark and illumination with variable bias voltages will be able to identify the type and density of defects in grains and grain/GB interfaces.


Author(s):  
J. S. Lally ◽  
L. E. Thomas ◽  
R. M. Fisher

A variety of materials containing many different microstructures have been examined with the USS MVEM. Three topics have been selected to illustrate some of the more recent studies of diffraction phenomena and defect, grain and multi-phase structures of metals and minerals.(1) Critical Voltage Effects in Metals and Alloys - This many-beam dynamical diffraction phenomenon, in which some Bragg resonances vanish at certain accelerating voltages, Vc, depends sensitively on the spacing of diffracting planes, Debye temperature θD and structure factors. Vc values can be measured to ± 0.5% in the HVEM ana used to obtain improved extinction distances and θD values appropriate to electron diffraction, as well as to probe local bonding effects and composition variations in alloys.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


Nanoscale ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 9517-9523 ◽  
Author(s):  
Huizhen Fan ◽  
Yu Fan ◽  
Wenna Du ◽  
Rui Cai ◽  
Xinshuang Gao ◽  
...  

ICG forms aggregates in positively charged mesoporous silica, which show an enhanced type I photoreaction pathway.


Sign in / Sign up

Export Citation Format

Share Document