Damage accumulation model for low cycle fatigue

2008 ◽  
Vol 30 (4) ◽  
pp. 756-765 ◽  
Author(s):  
A SEWERYN ◽  
A BUCZYNSKI ◽  
J SZUSTA
2013 ◽  
Vol 467 ◽  
pp. 312-316 ◽  
Author(s):  
M. Nikhamkin ◽  
A. Ilinykh

Experimental verification of the damage accumulation model of low cycle fatigue crack initiation and growth is executed. Loading wave form typical for discs of gas turbine engines is studied. Linear damage accumulation model is found to give acceptable accuracy for crack initiation and growth in powder nickel alloys. This model is acceptable for disc cyclic durability prediction.


2019 ◽  
Vol 86 (12) ◽  
Author(s):  
Akbar Ghazavizadeh ◽  
Fodil Meraghni ◽  
Laurent Peltier ◽  
Nadine Bourgeois

Abstract In this paper, a key differential equation is proposed to formulate fatigue damage evolution in metallic alloys under multiaxial, multiblock, proportional loadings in high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes. This differential equation possesses two main components: one is a stress function to accommodate the adopted fatigue criterion and the other one is a characteristic damage function that serves to capture the HCF response of alloys. Two distinct characteristic damage functions with three different multiaxial fatigue criteria, namely Sines, Crossland, and Dang Van criteria, are examined to develop six (out of many possible) variants of the presented damage accumulation model. As a validation measure, Chaboche’s HCF damage model is retrieved as a specific case of the developed formalism. For model parameters identification, an ad hoc two-level identification scheme is designed and numerically verified. It is demonstrated that endurance limit, which is determined from fully reversed HCF tests (i.e., R = −1), can be identified from fatigue tests with positive stress ratio (R > 0), thus making our development quite suitable for specimens prone to buckling under compression. Another salient feature of the devised identification scheme is its capability in extracting model parameters from noisy data.


2020 ◽  
Vol 86 (10) ◽  
pp. 46-55
Author(s):  
S. I. Eleonsky ◽  
Yu. G. Matvienko ◽  
V. S. Pisarev ◽  
A. V. Chernov

A new destructive method for quantitative determination of the damage accumulation in the vicinity of a stress concentrator has been proposed and verified. Increase of damage degree in local area with a high level of the strain gradient was achieved through preliminary low-cycle pull-push loading of plane specimens with central open holes. The above procedure is performed for three programs at the same stress range (333.3 MPa) and different stress ratio values 0.33, – 0.66 and – 1.0, and vice versa for two programs at the same stress ratio – 0.33 and different stress range 333.3 and 233.3 MPa. This process offers a set of the objects to be considered with different degree of accumulated fatigue damages. The key point of the developed approach consists in the fact that plane specimens with open holes are tested under real operation conditions without a preliminary notching of the specimen initiating the fatigue crack growth. The measured parameters necessary for a quantitative description of the damage accumulation process were obtained by removing the local volume of the material in the form of a sequence of narrow notches at a constant level of external tensile stress. External load can be considered an amplifier enhancing a useful signal responsible for revealing the material damage. The notch is intended for assessing the level of fatigue damage, just as probe holes are used to release residual stress energy in the hole drilling method. Measurements of the deformation response caused by local removing of the material are carried out by electronic speckle-pattern interferometry at different stages of low-cycle fatigue. The transition from measured in-plane displacements to the values of the stress intensity factor (SIF) and the T-stress was carried out on the basis of the relations of linear fracture mechanics. It was shown that the normalized dependences of the stress intensity factor on the durability percentage for the first notch (constructed for four programs of cyclic loading with different parameters), reflect the effect of the stress ratio and stress range of the loading cycle on the rate of damage accumulation. The data were used to obtain the explicit form of the damage accumulation function that quantitatively describes damage accumulation process. The functions were constructed for different stress ratios and stress ranges.


Author(s):  
A. I. Iskakbayev ◽  
◽  
Bagdat Teltayev ◽  
Rossi C. Oliviero ◽  
K. Estayev ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Zhanke Liu ◽  
Steven Tipton ◽  
Dinesh Sukumar

Summary Coiled tubing (CT) integrity is critical for well intervention operations in the field. To monitor and manage tubing integrity, the industry has developed a number of computer models over the past decades. Among them, low-cycle fatigue (LCF) modeling plays a paramount role in safeguarding tubing integrity. LCF modeling of CT strings dates back to the 1980s. Recently, novel algorithms have contributed to developments in physics-based modeling of tubing fatigue and plasticity. When CT trips into and out of the well, it goes through bending/straightening cycles under high differential pressure. Such tough conditions lead to low- or ultralow-cycle fatigue, limiting CT useful life. The model proposed in this study is derived from a previous one and is based on rigorously derived material parameters to compute the evolution of state variables from a wide range of loading conditions. Through newly formulated plasticity and strain parameters, a physics-based damage model predicts CT fatigue life, along with diametral growth and wall thinning. The revised modeling approach gives results for CT damage accumulation, diametral growth, and wall thinning under realistic field conditions, with experimental validation. For 20 different CT alloys, it was observed that the model improved in accuracy overall by approximately 18.8% and consistency by 14.0%, for constant pressure data sets of more than 4,500 data points. The modeling results provide insights into the nonlinear nature of fatigue damage accumulation. This study allowed developing recommendations to guide future analytical modeling and experimental investigations, summarize theoretical findings in physics-based LCF modeling, and provide practical guidelines for CT string management in the field. The study provides a fundamental understanding of CT LCF and introduces novel algorithms in plasticity and damage.


Sign in / Sign up

Export Citation Format

Share Document