Fatigue behavior of hybrid multi-bolted-bonded single-lap joints in woven composite plates

Author(s):  
Farid Gamdani ◽  
Rachid Boukhili ◽  
Aurelian Vadean
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1008
Author(s):  
Francesco Musiari ◽  
Fabrizio Moroni

The low quality of adhesion performance on polymeric surfaces has forced the development of specific pretreatments able to toughen the interface between substrate and adhesive. Among these methods, atmospheric pressure plasma treatment (APPT) appears particularly suitable for its environmental compatibility and its effectiveness in altering the chemical state of the surface. In this work, an experimental study on adhesively bonded joints realized using polyamide as substrates and polyurethane as the structural adhesive was carried out with the intent to characterize their fatigue behavior, which represents a key issue of such joints during their working life. The single lap joint (SLJ) geometry was chosen and several surface pretreatments were compared with each other: degreasing, abrasion (alone and followed by APPT) and finally APPT. The results show that the abrasion combined with APPT presents the most promising behavior, which appears consistent with the higher percentage of life spent for crack propagation found by means of DIC on this class of joints with respect to the others. APPT alone confers a good fatigue resistance with respect to the simple abrasion, especially at a low number of cycles to failure.


Author(s):  
SMJ Razavi ◽  
MR Ayatollahi ◽  
M Samari ◽  
LFM da Silva

This paper addresses numerical and experimental examination of the role of zigzag interface shapes on the load bearing capacity and fatigue life of adhesively bonded single lap joints. Aluminum adherends with non-flat zigzag interfaces were tested under both quasi-static and fatigue loading conditions. The quasi-static test results revealed that the non-flat adhesive joints have higher load bearing capacity compared to the conventional flat single lap joints. Comparative fatigue tests with different loading levels revealed that the non-flat zigzag single lap joint had considerably higher fatigue life than the conventional lap joint.


Author(s):  
Emin Ergun ◽  
Hasan Çallioğlu

AbstractThis experimental study deals with the flexural behaviors of composite single-lap adhesive joints after impact tests. Increasing impact energies are applied at the center of the composite plates having three different overlap lengths. It is shown that the overlap lengths and impact energy levels affect considerably the impact responses of the composite single-lap joints. It is also shown that the bending stiffness of the composite increases with increasing overlap length. For this reason, after the impact tests, how these effects influence the flexural behaviors of the impacted composite lap joints was also investigated. The flexural loads of the impacted and non-impacted composite single-lap joints were determined and compared with each other. It is shown that the residual flexural loads after impact increase with increasing overlap lengths but decrease with increasing impact energy.


2015 ◽  
Author(s):  
Qiuren Chen ◽  
Haiding Guo ◽  
John V. Lasecki ◽  
John Hill ◽  
Xuming Su ◽  
...  

2015 ◽  
Vol 31 (4) ◽  
pp. 433-439
Author(s):  
H. Çallioğlu ◽  
E. Ergun

AbstractThe aim of this experimental study is to investigate impact behaviors of the composite single-lap adhesive joints. The increasing impact energies, which are ranged from approximately 5 J to 30 J, are performed at the center of the composite plates having three different overlap lengths. It is shown that the overlap lengths and impact energy levels affect considerably the impact responses of the composite single lap joints. It is also shown that the bending stiffness of the composite increases by increase in the overlap length. An energy profiling method (EPM) is used to identify the penetration and perforation thresholds of composite lap joints. The damaged composite plates are visually inspected.


Sign in / Sign up

Export Citation Format

Share Document