scholarly journals Investigating swirl and tumble using two prototype inlet port designs by means of multi-planar PIV

Author(s):  
A. Kalpakli Vester ◽  
Y. Nishio ◽  
P.H. Alfredsson
Keyword(s):  
Author(s):  
Jim S. Cowart ◽  
Leonard J. Hamilton

A Cooperative Fuels Research (CFR) gasoline engine has been modified to run on computer controlled Port Fuel Injection (PFI) and electronic ignition. Additionally a fast acting sampling valve (controlled by the engine control computer) has been placed in the engine’s intake system between the fuel injector and cylinder head in order to measure the fuel components that are vaporizing in the intake port immediately after the fuel injection event, and separately during the intake valve open period. This is accomplished by fast sampling a small portion of the intake port gases during a specified portion of the engine cycle which are then analyzed with a gas chromatograph. Experimental mixture preparation results as a function of inlet port temperature and pressure are presented. As the inlet port operates at higher temperatures and lower manifold pressures more of the injected fuels’ heavier components evolve into the vapor form immediately after fuel injection. The post-fuel injection fuel-air equivalence ratio in the intake port is characterized. The role of the fuel injection event is to produce from 1/4 to slightly over 1/2 of the combustible fuel-air mixture needed by the engine, as a function of port temperature. Fuel vapor sampling during the intake valve open period suggests that very little fuel is vaporizing from the intake port puddle below the fuel injector. In-cylinder fuel vapor sampling shows that significant fuel vapor generation must occur in the lower intake port and intake valve region.


Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1950 ◽  
Author(s):  
Mohammed El-Adawy ◽  
Morgan Heikal ◽  
A. A. Aziz ◽  
Muhammad Siddiqui ◽  
Shahzad Munir
Keyword(s):  

1984 ◽  
Vol 106 (2) ◽  
pp. 129-133 ◽  
Author(s):  
H. Brombach

Flow control problems in combined sewerage systems can be solved with the aid of a new variation of the vortex amplifier. This valve has no moving parts, and comes under the category of pure fluidics; it has a conical vortex chamber and a single inlet port. Depending on the level of water in the vortex chamber the flow pattern may be either axially symmetrical or axially asymmetrical. This effect enables the device to alter its flow resistance in response to the input pressure. Several hundred of this type of the flow controller are already in operation. An example of their application is described below.


1994 ◽  
Vol 18 (9) ◽  
pp. 673-679 ◽  
Author(s):  
Yasuhisa Ohara ◽  
Kenzo Makinouchi ◽  
Julie Glueck ◽  
Byron Sutherland ◽  
Takatsugu Shimono ◽  
...  
Keyword(s):  

Author(s):  
A. Abd El-Sabor Mohamed ◽  
Saleh Abo-Elfadl ◽  
Abd El-Moneim M. Nassib

The in-cylinder airflow motion is an important factor that severely affects combustion efficiency and emissions in diesel engines. It is greatly affected by the inlet port and valve geometries. A diesel engine cylinder with a helical–spiral inlet port is used in this study. An ordinary inlet valve and shrouded inlet valve having different shroud and orientation angles are used to study the shroud effect on the swirl and tumble motion inside the engine cylinder. Four shroud angles of 90 deg, 120 deg, 150 deg, and 180 deg are used. With each shroud angle, four orientation angles of 0 deg, 30 deg, 60 deg, and 90 deg are also used. Three-dimensional simulation model using the shear stress transport (SST) k–ω model is used for simulating air flow through the inlet port, inlet valve, and engine cylinder during both the intake and compression strokes. The results showed that increasing the valve shroud angle increases the swirl, and the maximum increase occurs at a valve shroud angle of 180 deg and orientation angle of 0 deg with a value of 80% with respect to the ordinary valve. But it decreases the volumetric efficiency, and the maximum decrement occurs at valve shroud of 180 deg and orientation angle of 90 deg with a value of 5.98%. Variations of the shroud and orientation angles have very small effect on the tumble inside the engine cylinder.


Sign in / Sign up

Export Citation Format

Share Document