scholarly journals Topology optimization of conjugate heat transfer systems: A competition between heat transfer enhancement and pressure drop reduction

2019 ◽  
Vol 75 ◽  
pp. 165-184 ◽  
Author(s):  
V. Subramaniam ◽  
T. Dbouk ◽  
J.-L. Harion
2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


Author(s):  
Tariq Amin Khan ◽  
Wei Li ◽  
Zhengjiang Zhang ◽  
Jincai Du ◽  
Sadiq Amin Khan ◽  
...  

Heat transfer is a naturally occurring phenomenon which can be greatly enhanced by introducing longitudinal vortex generators (VGs). As the longitudinal vortices can potentially enhance heat transfer with small pressure loss penalty, VGs are widely used to enhance the heat transfer of flat-plate type heat exchangers. However, there are few researches which deal with its thermal optimization. Three dimensional numerical simulations are performed to study the effect of angle of attack and attach angle (angle between VG and wall) of vortex generator on the fluid flow and heat transfer characteristics of a flat-plate channel. The flow is assumed as steady state, incompressible and laminar within the range of studied Reynolds numbers (Re = 380, 760, 1140). In the present work, the average and local Nusselt number and pressure drop are investigated for Rectangular vortex generator (RVG) with varying angle of attack and attach angle. The numerical results indicate that the heat transfer and pressure drop increases with increasing the angle of attack to a certain range and then decreases with increasing angle of attack. Moreover, the attach angle also plays an importance role; a 90° attach angle is not necessary for enhancing the heat transfer. Usually, heat transfer enhancement is achieved at the expense of pressure drop penalty. To find the optimal position of vortex generator to obtain maximum heat transfer and minimum pressure drop, the data obtained from numerical simulations are used to train a BRANN (Bayesian-regularized artificial neural network). This in turn is used to drive multi-objective genetic algorithm (MOGA) to find the optimal parameters of VGs in the form of Pareto front. The optimal values of these parameters are finally presented.


1998 ◽  
Vol 120 (2) ◽  
pp. 342-347 ◽  
Author(s):  
B. A. Jubran ◽  
M. S. Al-Haroun

This paper reports an experimental investigation to study the effects of using various designs of secondary air injection hole arrangements on the heat transfer coefficient and the pressure drop characteristics of an array of rectangular modules at different values of free-stream Reynolds numbers in the range 8 × 103 to 2 × 104. The arrangement used is either one staggered row of simple holes or one row of compound injection holes. The pitch distances between the injection holes, as well as the injection angles, were varied in both the streamwise and spanwise directions. Generally, the presence of secondary air through the injection hole arrangement can give up to 54 percent heat transfer enhancement just downstream of the injection holes. The amount of heat transfer enhancement and pressure drop across the electronic modules is very much dependent on the design of the injection holes. The simple angle injection hole arrangement tends to give a better heat transfer enhancement and less pressure drop than the compound angle holes.


Author(s):  
Izzet Sahin ◽  
Andrew F. Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The internal cooling passages of gas turbine blades mostly have varying aspect ratios from one passage to another. However, there are limited data available in the open literature that used a reduced cross-section and aspect ratio, AR, after the tip turn. Therefore, the current study presents heat transfer and pressure drop of three different α = 45° profiled rib orientations, typical parallel (usual), reversed parallel (unusual), and criss-cross patterns in a rotating two-pass rectangular channel with AR = 4:1 and 2:1 in the first radially outward flow and second radially inward flow passages respectively. For each rib orientation, regional averaged heat transfer results are obtained for both the flow passages with the Reynolds number ranging from 10,000 to 70,000 for the first passage and 16000 to 114000 for the second passage with a rotational speed range of 0 rpm to 400 rpm. This results in the highest rotation number of 0.39 and 0.16 for the first and second passage respectively. The effects of rib orientation, aspect ratio variation, 180° tip turn, and rotation number on the heat transfer and pressure drop will be addressed. According to the results, for usual, unusual and criss-cross rib patterns, increasing rotation number causes the heat transfer to decrease on the leading surface and increase on the trailing surface for the first passage and vice versa for the second passage. Overall heat transfer enhancement of the usual and unusual rib patterns is higher than criss-cross one. In terms of the pressure losses, the criss-cross rib pattern has the lowest and the usual rib pattern has the highest-pressure loss coefficients. When pressure loss and heat transfer enhancement are both taken into account together, the criss-cross or unusual rib pattern might be an option to use in the internal cooling method. Therefore, the results can be useful for turbine blade internal cooling design and heat transfer analysis.


Author(s):  
Emad Y. Tanbour ◽  
Ramin K. Rahmani

Enhancement of the natural and forced convection heat transfer has been the subject of numerous academic and industrial studies. Air blenders, mechanical agitators, and static mixers have been developed to increase the forced convection heat transfer rate in compressible and incompressible flows. Stationary inserts can be efficiently employed as heat transfer enhancement devices in the natural convection systems. Generally, a stationary heat transfer enhancement insert consists of a number of equal motionless segments, placed inside of a pipe in order to control flowing fluid streams. These devices have low maintenance and operating costs, low space requirements and no moving parts. A range of designs exists for a wide range of specific applications. The shape of the elements determines the character of the fluid motion and thus determines thermal effectiveness of the insert. There are several key parameters that may be considered in the design procedure of a heat transfer enhancement insert, which lead to significant differences in the performance of various designs. An ideal insert, for natural conventional heat transfer in compressible flow applications, provides a higher rate of heat transfer and a thermally homogenous fluid with minimized pressure drop and required space. To choose an insert for a given application or in order to design a new insert, besides experimentation, it is possible to use Computational Fluid Dynamics to study the insert performance. This paper presents the outcomes of the numerical studies on industrial stationary heat transfer enhancement inserts and illustrates how a heat transfer enhancement insert can improve the heat transfer in buoyancy driven compressible flows. Using different measuring tools, thermal performance of two different inserts (twisted and helix) are studied. It is shown that the helix design leads to a higher rate of heat transfer, while causes a lower pressure drop in the flowfield, suggesting the insert effectiveness is higher for the helix design, compared to a twisted plate.


Sign in / Sign up

Export Citation Format

Share Document