Effect of 45-Deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1

Author(s):  
Izzet Sahin ◽  
Andrew F. Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The internal cooling passages of gas turbine blades mostly have varying aspect ratios from one passage to another. However, there are limited data available in the open literature that used a reduced cross-section and aspect ratio, AR, after the tip turn. Therefore, the current study presents heat transfer and pressure drop of three different α = 45° profiled rib orientations, typical parallel (usual), reversed parallel (unusual), and criss-cross patterns in a rotating two-pass rectangular channel with AR = 4:1 and 2:1 in the first radially outward flow and second radially inward flow passages respectively. For each rib orientation, regional averaged heat transfer results are obtained for both the flow passages with the Reynolds number ranging from 10,000 to 70,000 for the first passage and 16000 to 114000 for the second passage with a rotational speed range of 0 rpm to 400 rpm. This results in the highest rotation number of 0.39 and 0.16 for the first and second passage respectively. The effects of rib orientation, aspect ratio variation, 180° tip turn, and rotation number on the heat transfer and pressure drop will be addressed. According to the results, for usual, unusual and criss-cross rib patterns, increasing rotation number causes the heat transfer to decrease on the leading surface and increase on the trailing surface for the first passage and vice versa for the second passage. Overall heat transfer enhancement of the usual and unusual rib patterns is higher than criss-cross one. In terms of the pressure losses, the criss-cross rib pattern has the lowest and the usual rib pattern has the highest-pressure loss coefficients. When pressure loss and heat transfer enhancement are both taken into account together, the criss-cross or unusual rib pattern might be an option to use in the internal cooling method. Therefore, the results can be useful for turbine blade internal cooling design and heat transfer analysis.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Izzet Sahin ◽  
Andrew F Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The internal cooling passages of gas turbine blades mostly have varying aspect ratios from one passage to another. However, there are limited data available in the open literature that used a reduced cross section and aspect ratio (AR), after the tip turn. Therefore, the current study presents heat transfer and pressure drop of three different α = 45 deg profiled rib orientations, typical parallel (usual), reversed parallel (unusual), and crisscross patterns in a rotating two-pass rectangular channel with AR = 4:1 and 2:1 in the first radially outward flow and second radially inward flow passages, respectively. For each rib orientation, regional averaged heat transfer results are obtained for both the flow passages with the Reynolds number ranging from 10,000 to 70,000 for the first passage and 16,000 to 114,000 for the second passage with a rotational speed range of 0–400 rpm. This results in the highest rotation number of 0.39 and 0.16 for the first and second passage respectively. The effects of rib orientation, aspect ratio variation, 180-deg tip turn, and rotation number on the heat transfer and pressure drop will be addressed. According to the results, for usual, unusual and crisscross rib patterns, increasing rotation number causes the heat transfer to decrease on the leading surface and increase on the trailing surface for the first passage and vice versa for the second passage. The overall heat transfer enhancement of the usual and unusual rib patterns is higher than the crisscross one. In terms of the pressure losses, the crisscross rib pattern has the lowest and the usual rib pattern has the highest-pressure loss coefficients. When pressure loss and heat transfer enhancement are both taken into account together, the crisscross or unusual rib pattern might be an option to use in the internal cooling method. Therefore, the results can be useful for the turbine blade internal cooling design and heat transfer analysis.


Author(s):  
Metapun Nuntakulamarat ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This paper focuses on the measurements of heat transfer enhancement and pressure drop of different pin or fin configurations in a high aspect ratio (AR = 9.57/1.2) channel. Two different pin-fin shapes including circular pins and strip fins were studied. Different pin-fin spacings for circular pins (S/D = 2, 4) and strip fins (S/W = 8, 16) were investigated, respectively. In addition, the thickness effect of the strip fin was included in this study. The regionally averaged heat transfer measurement method was used to acquire the heat transfer coefficients on two opposite featured surfaces within the test channel. For each configuration, the tested Reynolds number was ranging from 20,000 to 80,000. The results indicate that the channel with circular pins has better heat transfer enhancement and higher pressure loss than their strip fins counterparts. However, the strip fins are considered better designs in terms of thermal performance. For the gas turbine designers aim at developing an improved internal cooling feature, this work demonstrates the great potential of the strip fins as a novel and effective cooling design compared with the conventional circular pins.


2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sébastien Kunstmann ◽  
Jens von Wolfersdorf ◽  
Uwe Ruedel

An investigation was conducted to assess the thermal performance of W-shaped, 2W-shaped and 4W-shaped ribs in a rectangular channel. The aspect ratios (W/H) were 2:1, 4:1, and 8:1. The ribs were located on one channel wall. The rib height (e) was kept constant with a rib height-to-hydraulic diameter ratio (e/Dh) of 0.02, 0.03, and 0.06. The rib pitch-to-height ratio (P/e) was 10. The Reynolds numbers investigated (Re > 90 000) are typical for combustor liner cooling configurations of gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The rib configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement is obtained by rib configurations with a rib section-to-channel height ratio (Wr/H) of 1:1. W-shaped ribs achieve the highest heat transfer enhancement levels in channels with an aspect ratio of 2:1, 2W-shaped ribs in channels with an aspect ratio of 4:1 and 4W-shaped ribs in channels with an aspect ratio of 8:1. Furthermore, the pressure loss increases with increasing complexity of the rib geometry and blockage ratio.


Author(s):  
Michael Huh ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

The focus of the current study was to determine the effects of rib spacing on heat transfer in rotating 1:4 AR channels. In the current study, heat transfer experiments were performed in a two-pass, 1:4 aspect ratio channel, with a sharp bend entrance. The channel leading and trailing walls in the first pass and second pass utilized angled rib turbulators (45° to the mainstream flow). The rib height-to-hydraulic diameter ratio (e/Dh) was held constant at 0.078. The channel was oriented 90° to the direction of rotation. Three rib pitch-to-rib height ratios (P/e) were studied: P/e = 2.5, 5, and 10. Each ratio was tested at five Reynolds numbers: 10K, 15K, 20K, 30K and 40K. For each Reynolds number, experiments were conducted at five rotational speeds: 0, 100, 200, 300, and 400 rpm. Results showed that the sharp bend entrance has a significant effect on the first pass heat transfer enhancement. In the second pass, the rib spacing and rotation effect are reduced. The P/e = 10 case had the highest heat transfer enhancement based on total area, whereas the P/e = 2.5 had the highest heat transfer enhancement based on the projected area. The current study has extended the range of the rotation number (Ro) and local buoyancy parameter (Box) for a ribbed 1:4 aspect ratio channel up to 0.65 and 1.5, respectively. Correlations for predicting heat transfer enhancement, due to rotation, in the ribbed (P/e = 2.5, 5, and 10) 1:4 aspect ratio channel, based on the extended range of the rotation number and buoyancy parameter, are presented in the paper.


Author(s):  
Nojin Park ◽  
Changmin Son ◽  
Jangsik Yang ◽  
Changyong Lee ◽  
Kidon Lee

A series of experiments were conducted to investigate the detailed heat transfer characteristics of a large scaled model of a turbine blade internal cooling system. The cooling system has one passage in the leading edge and a triple passage for the remained region with two U-bends. A large scaled model (2 times) is designed to acquire high resolution measurement. The similarity of the test model was conducted with Reynolds number at the inlet of the internal cooling system. The model is designed to simulate the flow at engine condition including film extractions to match the changes in flowrates through the internal cooling system. Also, 45 deg ribs were installed for heat transfer enhancement. The experiments were performed varying Reynolds number in the range of 20,000 to 100,000 with and without ribs under stationary condition. This study employs transient heat transfer technique using thermochromic liquid crystal (TLC) to obtain full surface heat transfer distributions. The results show the detailed heat transfer distributions and pressure loss. The characteristics of pressure loss is largely dependent on the changes in cross-sectional area along the passages, the presence of U-bends and the extraction of coolant flow through film holes. The local and area averaged Nusselt number were compared to available correlations. Finally, the thermal performance counting the heat transfer enhancement as well as pressure penalty is presented.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Andrew F. Chen ◽  
Hao-Wei Wu ◽  
Nian Wang ◽  
Je-Chin Han

Experimental investigation on rotation and turning vane effects on heat transfer was performed in a two-pass rectangular internal cooling channel. The channel has an aspect ratio of AR = 2:1 and a 180 deg tip-turn, which is a scaled up model of a typical internal cooling passage of gas turbine airfoils. The leading surface (LS) and trailing surface (TS) are roughened with 45 deg angled parallel ribs (staggered P/e = 8, e/Dh = 0.1). Tests were performed in a pressurized vessel (570 kPa) where higher rotation numbers (Ro) can be achieved with a maximum Ro = 0.42. Five Reynolds numbers (Re) were examined (Re = 10,000–40,000). At each Reynolds number, five rotational speeds (Ω = 0–400 rpm) were considered. Results showed that rotation effects are stronger in the tip regions as compared to other surfaces. Heat transfer enhancement up to four times was observed on the tip wall at the highest rotation number. However, heat transfer enhancement is reduced to about 1.5 times with the presence of a tip turning vane at the highest rotation number. Generally, the tip turning vane reduces the effects of rotation, especially in the turn portion.


Author(s):  
Yao-Hsien Liu ◽  
Michael Huh ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Heat transfer and pressure drop have been experimentally investigated in an equilateral triangular channel (Dh = 1.83cm), which can be used to simulate the internal cooling passage near the leading edge of a gas turbine blade. Three different rib configurations (45°, inverted 45°, and 90°) were tested at four different Reynolds numbers (10000–40000), each with five different rotational speeds (0–400 rpm). The rib pitch-to-height (P/e) ratio is 8 and the height-to-hydraulic diameter (e/Dh) ratio is 0.087 for every rib configuration. The rotation number and buoyancy parameter achieved in this study were 0–0.58 and 0–2.3, respectively. Both the rotation number and buoyancy parameter have been correlated to predict the rotational heat transfer in the ribbed equilateral triangular channel. For the stationary condition, staggered 45° angled ribs show the highest heat transfer enhancement. However, staggered 45° angled ribs and 90° ribs have the higher comparable heat transfer enhancement at rotating condition near the blade leading edge region.


Author(s):  
Se´bastien Kunstmann ◽  
Jens von Wolfersdorf ◽  
Uwe Ruedel

An investigation was conducted to assess the thermal performance of W-shaped, 2W-shaped and 4W-shaped ribs in a rectangular channel. The aspect ratios (W/H) were 2:1, 4:1 and 8:1. The ribs were located on one channel wall. The rib height (e) was kept constant with a rib height-to-hydraulic diameter ratio (e/Dh) of 0.02, 0.03 and 0.06. The rib pitch-to-height ratio (P/e) was 10. The Reynolds numbers investigated (Re>90,000) are typical for combustor liner cooling configurations of gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The rib configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement is obtained by rib configurations with a rib section-to-channel height ratio (Wr/H) of 1:1. W-shaped ribs achieve the highest heat transfer enhancement levels in channels with an aspect ratio of 2:1, 2W-shaped ribs in channels with an aspect ratio of 4:1 and 4W-shaped ribs in channels with an aspect ratio of 8:1. Furthermore, the pressure loss increases with increasing complexity of the rib geometry and blockage ratio.


Author(s):  
Michael Huh ◽  
Jiang Lei ◽  
Yao-Hsien Liu ◽  
Je-Chin Han

This paper experimentally investigated the rotational effects on heat transfer in a smooth two-pass rectangular channel (AR=2:1), which is applicable to the cooling passages in the mid portion of the gas turbine blade. The test channel has radially outward flow in the first passage and radially inward flow in the second passage after a 180° sharp turn. In the first passage, the flow is developing and heat transfer is increased compared to the fully developed case. Rotation slightly reduces the heat transfer on the leading surface and increases heat transfer on the trailing surface in the first pass. Heat transfer is highly increased by rotation in the turn portion of the first pass on both leading and trailing surfaces. Rotation increased heat transfer enhancement in the tip region up to a maximum Nu ratio (Nu/Nus) of 1.83. In the second passage, under rotating conditions, the leading surface experienced heat transfer enhancements above the stationary case while the trailing surface decreased. The current study has more than 4 times the range of the rotation number previously achieved for the 2:1 aspect ratio channel. The increased range of the rotation number and buoyancy parameter reached in this study are 0–0.45 and 0–0.8, respectively. The higher rotation number and buoyancy parameter have been correlated very well to predict the rotational heat transfer in the two-pass, 2:1 aspect ratio flow channel.


Sign in / Sign up

Export Citation Format

Share Document