Heat Transfer Enhancement in Electronic Modules Using Various Secondary Air Injection Hole Arrangements

1998 ◽  
Vol 120 (2) ◽  
pp. 342-347 ◽  
Author(s):  
B. A. Jubran ◽  
M. S. Al-Haroun

This paper reports an experimental investigation to study the effects of using various designs of secondary air injection hole arrangements on the heat transfer coefficient and the pressure drop characteristics of an array of rectangular modules at different values of free-stream Reynolds numbers in the range 8 × 103 to 2 × 104. The arrangement used is either one staggered row of simple holes or one row of compound injection holes. The pitch distances between the injection holes, as well as the injection angles, were varied in both the streamwise and spanwise directions. Generally, the presence of secondary air through the injection hole arrangement can give up to 54 percent heat transfer enhancement just downstream of the injection holes. The amount of heat transfer enhancement and pressure drop across the electronic modules is very much dependent on the design of the injection holes. The simple angle injection hole arrangement tends to give a better heat transfer enhancement and less pressure drop than the compound angle holes.

2003 ◽  
Vol 125 (4) ◽  
pp. 587-594 ◽  
Author(s):  
S. W. Moon ◽  
S. C. Lau

Experiments have been conducted to study steady heat transfer between two blockages with holes and pressure drop across the blockages, for turbulent flow in a rectangular channel. Average heat transfer coefficient and local heat transfer distribution on one of the channel walls between two blockages, and overall pressure drop across the blockages were obtained, for nine different staggered arrays of holes in the blockages and Reynolds numbers of 10,000 and 30,000. For the hole configurations studied, the blockages enhanced heat transfer by 4.6 to 8.1 times, but significantly increased the pressure drop. Smaller holes in the blockages caused higher heat transfer enhancement, but larger increase of the pressure drop than larger holes. The heat transfer enhancement was lower in the higher Reynolds number cases. Because of the large pressure drop, the heat transfer per unit pumping power was lower with the blockages than without the blockages. The local heat transfer was lower nearer the upstream blockage, the highest near the downstream blockage, and also relatively high in regions of reattachment of the jets leaving the upstream holes. The local heat transfer distribution was strongly dependent on the configuration of the hole array in the blockages. A third upstream blockage lowered both the heat transfer and the pressure drop, and significantly changed the local heat transfer distribution.


Author(s):  
Zhi-Min Yao ◽  
Zhi-Gang Feng ◽  
Zuo-Qin Qian ◽  
Zhi-Zhe Chen

Heat transfer rate and pressure drop of turbulent flows of water in a smooth-wall tube and five corrugated tubes at Reynolds numbers between 7,500 and 50,000 are studied using the commercial software FLUENT. The corrugated tube is constructed by placing protruded ridges evenly along a tube. Depending on the different design of corrugated tubes, our numerical simulation results show that the use of corrugated tubes can improve heat transfer rate by a factor of 1.5 to 2 at Reynolds numbers between 7,500 and 12,000 when compared to a smooth-wall tube. However, the rate of enhancement gradually decreases to a factor of 1.1 to 1.5 as flow Reynolds number increases to 50,000. We further studied the pressure drop and friction factors of the corrugated tube. For the corrugated tube with the highest heat transfer enhancement, we found the pressure drop increases by a factor of 3 to 4 compared to a smooth-wall tube, while the friction factor increases by a factor of 3.5 to 4.4. These findings can be very useful in the design of more efficient heat exchangers.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Shailesh Kumar Sarangi ◽  
Dipti Prasad Mishra ◽  
Praveen Mishra

AbstractThis paper numerically investigates the heat transfer enhancement using rectangular winglet pairs in a fin-and-tube type heat transfer surface having five inline rows of tubes. The influence of number of winglets, attack angles of the winglets, and their location has been analyzed under laminar flow conditions with Reynolds number ranging 400–1500. To account for the combined effect of heat transfer enhancement and pressure drop penalty, an enhancement factor is also discussed by changing the winglet pair's number and location. The numerical results show that pressure drop can be reduced significantly by placing the winglet more toward the exit of the flow channel. Streamwise distance and spanwise distance of the winglet pairs have been investigated for maximum enhancement factor. The numerically obtained results show that the winglets number and their placement at different locations have a major influence on enhancement factor. The results show that both the heat transfer and the pressure drop increase with an increase in attack angle of the winglets and best angle for the highest enhancement factor has been found out. Correlations have been developed for streamwise distance, spanwise distance, and angle of attack for different range of Reynolds numbers.


2019 ◽  
Vol 29 (9) ◽  
pp. 3128-3147 ◽  
Author(s):  
Mojtaba Bezaatpour ◽  
Mohammad Goharkhah

Purpose With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally accompanied by undesirable increase of pressure drop and consequently a pumping power penalty. The current study aims to present a novel and easy method to manufacture a mini heat sink using porous fins and magnetite nanofluid (Fe3O4/water) as the coolant for simultaneous heat transfer enhancement and pressure drop reduction. Design/methodology/approach A three-dimensional numerical study is carried out to evaluate the thermal and hydrodynamic performance of the mini heat sink at different volume fractions, porosities and Reynolds numbers, using finite volume method. The solver specifications for discretization of the domain involve the SIMPLE, second-order upwind and second order for pressure, momentum and energy, respectively. Findings Results show that porous fins have a favorable effect on both heat transfer and pressure drop compared to solid fins. Creation of a virtual velocity slip on the channel-fin interfaces similar to the micro scale conditions and the flow permeation into the porous fins are the main mechanisms of pressure drop reduction. On the other hand, the heat transfer enhancement is attributed to the increase of the solid-fluid contact area and the improvement of the flow mixing because of the flow permeation into the porous fins. An optimal porosity for maximum convective heat transfer enhancement is obtained as a function of Reynolds number. However, taking both pressure drop and heat transfer effects into account, the overall heat sink performance is shown to be improved at high of Reynolds numbers, volume fractions and fin porosities. Research limitations/implications Thermal radiation and gravity effects are ignored, and thermal equilibrium is assumed between solid and fluid phases. Originality/value A maximum of 32 per cent increase of convective heat transfer is achieved along with a maximum of 33 per cent reduction in the pressure drop using porous fins and ferrofluid in heat sink.


2008 ◽  
Author(s):  
S. G. Bhatta ◽  
T. R. Seetharam

A three dimensional study of heat transfer from an array of heated blocks is presented. Heated blocks represent electronic modules mounted on horizontal circuit board in a rectangular channel. Numerically obtained average heat transfer coefficients for the top surface of the heated blocks are compared with experimentally obtained values, and it is found that there is a good agreement between the two at lower Reynolds numbers, 7600 to 22000. Further, the horizontal module board affixed with heated modules is swiveled upwards longitudinally in the vertical plane about the front end of the plate for the same Reynolds numbers. The influence of angle of orientation of the heated bottom plate on the heat transfer enhancement from the heated modules is studied, and it is observed that there is a remarkable improvement in heat transfer even for low angle of swivel. It is observed that heat transfer enhancement is accompanied with a penalty in terms of increase in pressure drop; and for low angle of swivel, the pressure drop increase is noted to be moderate.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


Sign in / Sign up

Export Citation Format

Share Document