Large eddy simulation of high pressure spray with the focus on injection pressure

2020 ◽  
Vol 82 ◽  
pp. 108551 ◽  
Author(s):  
Fatemeh Salehi ◽  
Mohammadmahdi Ghiji ◽  
Longfei Chen
MTZ worldwide ◽  
2017 ◽  
Vol 78 (5) ◽  
pp. 50-57 ◽  
Author(s):  
Junmei Shi ◽  
Pablo Lopez Aguado ◽  
Noureddine Guerrassi ◽  
Gavin Dober

Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Film cooling is commonly used to protect turbine vanes and blades from the hot gases produced in the combustion chamber. The design and optimization of these systems can however only be achieved if a precise prediction of the fluid mechanics and film efficiency is guaranteed at a level where induced losses are fully mastered. Such a prerequisite induces at the numerical level to be able to identify and assess losses. In this context, the present study addresses loss assessment in a wall-resolved Large Eddy Simulation (LES) of the film-cooled high-pressure turbine blade cascade T120D from the European project AITEB II. The objectives are twofolds: (1) to evaluate the capacity of LES to predict adiabatic film cooling effectiveness in a mastered academic case; and (2) to investigate loss generation mechanisms in a fully anisothermal configuration. When it comes to LES predictions of T120D, the flow structure around the blade and the coolant jet organization are coherent with literature findings. Satisfactory agreements are furthermore retrieved for the pressure load prediction as well as the adiabatic film effectiveness if compared to the experiment. Loss generation is then investigated illustrating the fact that aerodynamics losses dominate mixing losses which are mainly located in the coolant film. This is in line with the temperature difference between the hot and coolant flows that is low for this experimental condition. Distinct contributions can however be made available by studying the local loss generation maps by means of Second Law Analysis if recast in the specific context of anisothermal flows when simulated by LES.


Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier ◽  
...  

Abstract The design optimization of aviation propulsion systems by means of computational fluid dynamics is key to increase their efficiency and reduce pollutant and noise emissions. The recurrent increase in available computing power allows nowadays to perform unsteady high-fidelity computations of the different components of a gas turbine. However, these simulations are often made independently of each other and they only share average quantities at interfaces. In this work, the methodology and first results for a sectoral large-eddy simulation of an integrated high-pressure compressor and combustion chamber of a typical turbine engine architecture is proposed. In the simulation, the compressor is composed of one main blade and one splitter blade, two radial diffuser vanes and six axial diffuser vanes. The combustion chamber is composed of the contouring casing, the flame-tube and a T-shaped vaporizer. This integrated computation considers a good trade-off between accuracy of the simulation and affordable CPU cost. Results are compared between the stand-alone combustion chamber simulation and the integrated one in terms of global, integral and average quantities. It is shown that pressure perturbations generated by the interaction of the impeller blades with the diffuser vanes are propagated through the axial diffuser and enter the combustion chamber through the dilution holes and the vaporizer. Due to the high amplitude of the pressure perturbations, several variables are perturbed at the blade-passing frequency and multiples. This is also reflected on combustion where two broadband peaks appear for the global heat release.


2019 ◽  
pp. 100052 ◽  
Author(s):  
Ioannis Bagkeris ◽  
Vipin Michael ◽  
Robert Prosser ◽  
Adam Kowalski

Author(s):  
Martin Thomas ◽  
Jerome Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Charlie Koupper

Abstract Development goals for next generation aircraft engines are mainly determined by the need to reduce fuel consumption and environmental impact. To reduce NOx emissions lean combustion technologies will be applied in future development projects. The more compact design and the absence of dilution holes in this type of engines shortens residence times in the combustion chamber and reduces mixing which results in higher levels of swirl, turbulence and temperature distortions at the exit of the combustion chamber. For these engines interactions between components are more important, so that the traditional engine design approach of component-wise optimization will have to be adapted. To study new lean burn architectures the European FACTOR project investigates the transport of hot streaks produced by a non-reactive combustor simulator through a single stage high-pressure turbine. In this work high-fidelity Large Eddy Simulation (LES) of combustor and complete high-pressure turbine are discussed and validated against experimental data. Measurement data is available on P40 (exit of the combustion chamber), P41 (exit of the stator) and P42 (exit of the rotor) and generally shows a good agreement to LES data.


Sign in / Sign up

Export Citation Format

Share Document