The experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow

Author(s):  
Chih-Yung Huang ◽  
Cheng-Min Wu ◽  
Ying-Nung Chen ◽  
Tong-Miin Liou
Author(s):  
B. Mathew ◽  
H. Hegab

In this paper the effect of axial heat conduction on the thermal performance of a microchannel heat exchanger with non-adiabatic end walls is studied. The two ends of the wall separating the coolant are assumed to be subjected to boundary condition of the first kind. As the end walls are not insulated heat transfer between the microchannel heat exchanger and its surroundings occur. Analytical equations have been formulated for predicting the axial temperature of the coolants and the wall as well as for determining the effectiveness of both fluids. The effectiveness of the fluids has been found to depend on the NTU, axial heat conduction parameter and end wall temperatures. The heat transfer through the end walls have been expressed in nondimensional terms. The nondimensional heat transfer from both ends of the wall also depends on the axial heat conduction parameter and temperature gradient at the end walls. A new parameter, performance factor, has been proposed for comparing the variation in effectiveness due to axial heat conduction coupled with heat transfer with the effectiveness without axial heat conduction. The effectiveness of both the hot and cold fluid for several cases of end wall temperatures and axial heat conduction parameter are analyzed in this paper for better understanding of heat transfer dynamics of microchannel heat exchangers.


2001 ◽  
Vol 124 (2) ◽  
pp. 356-364 ◽  
Author(s):  
Nicolas G. Hadjiconstantinou ◽  
Olga Simek

We investigate the constant-wall-temperature convective heat-transfer characteristics of a model gaseous flow in two-dimensional micro and nano-channels under hydrodynamically and thermally fully developed conditions. Our investigation covers both the slip-flow regime 0⩽Kn⩽0.1, and most of the transition regime 0.1<Kn⩽10, where Kn, the Knudsen number, is defined as the ratio between the molecular mean free path and the channel height. We use slip-flow theory in the presence of axial heat conduction to calculate the Nusselt number in the range 0⩽Kn⩽0.2, and a stochastic molecular simulation technique known as the direct simulation Monte Carlo (DSMC) to calculate the Nusselt number in the range 0.02<Kn<2. Inclusion of the effects of axial heat conduction in the continuum model is necessary since small-scale internal flows are typically characterized by finite Peclet numbers. Our results show that the slip-flow prediction is in good agreement with the DSMC results for Kn⩽0.1, but also remains a good approximation beyond its expected range of applicability. We also show that the Nusselt number decreases monotonically with increasing Knudsen number in the fully accommodating case, both in the slip-flow and transition regimes. In the slip-flow regime, axial heat conduction is found to increase the Nusselt number; this effect is largest at Kn=0 and is of the order of 10 percent. Qualitatively similar results are obtained for slip-flow heat transfer in circular tubes.


2001 ◽  
Author(s):  
Olga Simek ◽  
Nicolas G. Hadjiconstantinou

Abstract We present an investigation of slip-flow constant-wall-temperature convective heat transfer in circular tubes under hydrodynamically and thermally fully developed conditions. Our analysis includes the contribution of axial heat conduction (finite Peclet number) which is important in small scale flows, and has not been included in previous investigations of slip-flow heat transfer. The Nusselt number is found to decrease with increasing Knudsen number for all Peclet numbers in the fully accommodating case, as expected. The effect of axial heat conduction is found to be most important at Kn = 0, and results in an increase in the Nusselt number of the order of 15%; as Kn increases, the effect of axial heat conduction decreases.


Author(s):  
B. Mathew ◽  
H. Hegab

The thermal model of a balance counter flow microchannel heat exchanger subjected to external heat transfer and axial heat conduction is modeled in this paper. Three governing equations are developed, one for each of the two fluids and the third for the wall separating the fluids. The ends of the wall separating the fluids are assumed to be insulated. The equations are solved numerically using finite difference method. The model developed in this paper is verified using the conventional effectiveness-NTU equations and existing models that consider each of these effects individually. The combined effect of axial heat conduction and external heating always degraded the hot fluid effectiveness for all values of NTU. Irrespective of NTU the cold fluid effectiveness either increased or decreased depending on whether the degradation in heat gain due to axial heat conduction was compensated by external heat transfer.


Author(s):  
Zhi-Xin Li ◽  
Wei Wang ◽  
Zeng-Yuan Guo

Single-phase convective heat transfer in microtubes was numerically studied with consideration on the heat conduction in the tube wall. It indicates that the Nusselt numbers of the fully developed laminar convective heat transfer in microtubes with convective boundary condition outside the tube vary from 3.66 to 4.36, which represent the conventional results for isothermal and constant heat flux boundaries respectively. The Nusselt number depends on the parameters of thermal conductivity ratio (k*), diameter ratio (D*), and Biot number. One-dimensional thermal resistance model could underestimate the Nusselt number if the axial heat conduction in the wall can not be ignored. Discrepancies between the experimental results for the Nusselt number based on 1-D model and the standard values might be misunderstood as being caused by novel phenomena at microscales.


Sign in / Sign up

Export Citation Format

Share Document