Momentum and heat transfer from a heated circular cylinder in Bingham plastic fluids

Author(s):  
N. Nirmalkar ◽  
R.P. Chhabra
2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Anamika Maurya ◽  
Naveen Tiwari ◽  
R. P. Chhabra

Abstract This work aims to explore the T-channel momentum and heat transfer characteristics with the combined effect of Bingham plastic fluids (0.01 ≤ Bn ≤ 20) behavior and geometrical variation in terms of branching angle (30 deg ≤ α ≤ 90 deg). The problem has been solved over a wide range of Reynolds number (50 ≤ Re ≤ 300) and Prandtl number (10 ≤ Pr ≤ 50). For the momentum flow, qualitative and quantitative features are analyzed in terms of streamlines, structure of yielded/unyielded regions, shear rate contours, plug width and length variation, and local pressure coefficient. These features have been represented in terms of isotherm patterns, temperature profile, Nusselt number, and its asymptotic value for heat transfer characteristics. The recirculating flows have been presented here in the vicinity of T-junction, which promote mixing and heat transfer. Broadly, the size of this zone bears a positive dependence on Re and α. However, fluid yield stress tends to suppress it. The critical Reynolds and Bingham numbers were found to be strong functions of the pertinent parameters like α. The inclination angle exerts only a weak effect on the yielded/unyielded regions and on the recirculation length of main branch. Results show a strong relationship of the plug width and length with key parameters and branches. The Nusselt number exhibits a positive relationship with α, Bn, and Re but for lower Pr in the T-junction vicinity for both branches. Such length indicates the required optimum channel length for thermal mixing.


1967 ◽  
Vol 89 (2) ◽  
pp. 185-193 ◽  
Author(s):  
M. E. Goldstein ◽  
Wen-Jei Yang ◽  
J. A. Clark

An analysis has been made to determine the heat transfer and friction characteristics in a two-phase (gas-liquid) flow over a circular cylinder. It is demonstrated that the resulting two-layer flow problem can be formulated exactly within the framework of laminar boundary layer theory. Two cases are studied; (1) For the parameter E greater or equal to 0.1 and the drop trajectories straight and, (2) For E less or equal to 0.1 and for any drop trajectory. Solutions obtained in power series include the local liquid-film thickness, velocity and temperature profiles, skin friction and Nusselt number. Numerical results disclose a significant increase in both heat transfer rate and skin friction over those of a pure gas flow. The theoretical prediction compares favorably with experimental results of Acrivos, et al. [1].


2018 ◽  
Vol 14 (5) ◽  
pp. 940-959 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Manjunatha Gudekote ◽  
Rajashekhar Choudhari ◽  
Prasad K.V.

Purpose This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the Herschel-Bulkley fluid are considered. The impacts of relevant parameters on flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids. The paper aims to discuss these issues. Design/methodology/approach The administering equations are solved utilizing long wavelength and low Reynolds number approximations, and exact solutions are acquired for velocity, temperature, flux and stream functions. Findings It is seen that the flow rate in a Newtonian fluid is high when contrasted with the Herschel-Bulkley model, and the inlet elastic radius and outlet elastic radius have opposite effects on the flow rate. Originality/value The analysis carried out in this paper is about the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impact of slip and heat transfer on a Herschel-Bulkley fluid is taken into account. The impacts of relevant parameters on the flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids.


Sign in / Sign up

Export Citation Format

Share Document