plastic fluids
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Bairi Levi Rakshith

The free convection phenomenon from a heated square cylinder submerged in Bingham Plastic fluids is numerically investigated. The governing equations are solved for a wide range of physical dimensionless parameters, such as Rayleigh number (10^2 ≤ Ra ≤ 10^5), Prandtl number (10 ≤ Pr ≤ 100) and Bingham number (0 ≤ Bn ≤ 10^7). The heat transfer characteristics are investigated in terms of local Nusselt number distribution over the surface of the cylinder surface average Nusselt number. Streamlines, isothermal contours, yielded and unyielded regions are visualized in detail.


2021 ◽  
Author(s):  
Donglei LIU ◽  
Haizhen ZHOU ◽  
Kun FANG ◽  
Chuanliang CAO

In this study, the rheological properties and physical significations of an incompressible viscoelastic (inCVE) the inCVE model was investigated by employing molecular dynamics calculations. Polypropylene (PP) and polystyrene (PS) polymers were selected as candidate materials, the corresponding cell models consisting of five chains of 80 (PP) and 30 (PS) units were built successively. The energy minimization and anneal treatment were launched to optimize the unfavorable structures. The periodic boundary condition, COMPASS force field and the Velocity-Verlet algorithm were employed to calculate the shear flow behavior of chains. The sample data were collected and fitted based on the Matlab platform, and the analysis of the variance (ANOVA) method was performed to determine the validity of the model. Experimental results reveal that the inCVE model matches well with the pseudo-plastic fluids. Compared with the Ostwald-de Waele power law model and Cross model, it is effective and robust, and exhibits a three-stage rheological characteristic. Moreover, it characterizes the stress yield, activation energy, temperature dependence and viscoelastic response of polymers.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Anamika Maurya ◽  
Naveen Tiwari ◽  
R. P. Chhabra

Abstract This work aims to explore the T-channel momentum and heat transfer characteristics with the combined effect of Bingham plastic fluids (0.01 ≤ Bn ≤ 20) behavior and geometrical variation in terms of branching angle (30 deg ≤ α ≤ 90 deg). The problem has been solved over a wide range of Reynolds number (50 ≤ Re ≤ 300) and Prandtl number (10 ≤ Pr ≤ 50). For the momentum flow, qualitative and quantitative features are analyzed in terms of streamlines, structure of yielded/unyielded regions, shear rate contours, plug width and length variation, and local pressure coefficient. These features have been represented in terms of isotherm patterns, temperature profile, Nusselt number, and its asymptotic value for heat transfer characteristics. The recirculating flows have been presented here in the vicinity of T-junction, which promote mixing and heat transfer. Broadly, the size of this zone bears a positive dependence on Re and α. However, fluid yield stress tends to suppress it. The critical Reynolds and Bingham numbers were found to be strong functions of the pertinent parameters like α. The inclination angle exerts only a weak effect on the yielded/unyielded regions and on the recirculation length of main branch. Results show a strong relationship of the plug width and length with key parameters and branches. The Nusselt number exhibits a positive relationship with α, Bn, and Re but for lower Pr in the T-junction vicinity for both branches. Such length indicates the required optimum channel length for thermal mixing.


2018 ◽  
Vol 14 (5) ◽  
pp. 940-959 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Manjunatha Gudekote ◽  
Rajashekhar Choudhari ◽  
Prasad K.V.

Purpose This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the Herschel-Bulkley fluid are considered. The impacts of relevant parameters on flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids. The paper aims to discuss these issues. Design/methodology/approach The administering equations are solved utilizing long wavelength and low Reynolds number approximations, and exact solutions are acquired for velocity, temperature, flux and stream functions. Findings It is seen that the flow rate in a Newtonian fluid is high when contrasted with the Herschel-Bulkley model, and the inlet elastic radius and outlet elastic radius have opposite effects on the flow rate. Originality/value The analysis carried out in this paper is about the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impact of slip and heat transfer on a Herschel-Bulkley fluid is taken into account. The impacts of relevant parameters on the flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids.


Author(s):  
Nariman Ashrafi ◽  
Ali Sadeghi ◽  
Armin Chegini

In the present research, the flow of visco-plastic fluid is investigated in a duct with triangular obstacles on the bottom plate. The effect of different inlet velocities on the flow behavior is observed specially around the obstacles. The viscosity as the function of velocity gradient and hence the Reynolds numbers, are obtained on certain lines for different values of fluid characteristics and flow indexes. Herschel-Bulkley model as a generalized model of visco-plastic fluids is used to simulate the fluid motion along the channel. Reverse flows and vortexes are shown before and past the obstacles.


Sign in / Sign up

Export Citation Format

Share Document