Characterization of novel ceramic composites for rocket nozzles in high-temperature harsh environments

Author(s):  
Stefano Mungiguerra ◽  
Giuseppe D. Di Martino ◽  
Raffaele Savino ◽  
Luca Zoli ◽  
Laura Silvestroni ◽  
...  
2021 ◽  
Author(s):  
STEFANO MUNGIGUERRA ◽  
ANSELMO CECERE ◽  
RAFFAELE SAVINO

The most extreme aero-thermo-dynamic conditions encountered in aerospace applications include those of atmospheric re-entry, characterized by hypersonic Mach numbers, high temperatures and a chemically reacting environment, and of rocket propulsion, in which a combusting, high-pressure, supersonic flow can severely attack the surfaces of the motor internal components (particularly nozzle throats), leading to thermo-chemical erosion and consequent thrust decrease. For these applications, Ultra-High-Temperature Ceramics (UHTC), namely transition metal borides and carbides, are regarded as promising candidates, due to their excellent high-temperature properties, including oxidation and ablation resistance, which are boosted by the introduction of secondary phases, such as silicon carbide and carbon fibers reinforcement (in the so-called Ultra-High- Temperature Ceramic Matrix Composites, UHTCMC). The recent European H2020 C3HARME research project was devoted to development and characterization of new-class UHTCMCs for near-zero ablation thermal protection systems for re-entry vehicles and near-zero erosion rocket nozzles. Within the frame of the project and in collaboration with several research institutions and private companies, research activities at the University of Naples “Federico II” (UNINA) focused on requirements definition, prototypes design and test conditions identification, with the aim to increase the Technology Readiness Level (TRL) of UHTCMC up to 6. Experimental tests were performed with two facilities: an arc-jet plasma wind tunnel, where small specimens were characterized in a relevant atmospheric re-entry environment (Fig.1a), and a lab-scale hybrid rocket engine, where material testing was performed with different setups, up to complete nozzle tests, in conditions representative of real propulsive applications (Fig.1b). The characterization of the aero-thermo-chemical response and ablation resistance of different UHTCMC formulations was supported by numerical computations of fluiddynamic flowfields and materials thermal behavior. The UNINA activities provided a large database supporting the achievement of the project objectives, with development and testing of full-scale TPS assemblies and a large-size solid rocket nozzle.


2019 ◽  
Vol 34 (15) ◽  
pp. 2573-2581 ◽  
Author(s):  
Brad W. Hoff ◽  
Steven C. Hayden ◽  
Martin S. Hilario ◽  
Rachael O. Grudt ◽  
Frederick W. Dynys ◽  
...  

Abstract


2016 ◽  
Vol 858 ◽  
pp. 864-867 ◽  
Author(s):  
Shinichiro Kuroki ◽  
Hirofumi Nagatsuma ◽  
Milantha de Silva ◽  
Seiji Ishikawa ◽  
Tomonori Maeda ◽  
...  

Characteristics of 4H-SiC nMOSFETs with arsenic-doped S/D and NbNi silicide contacts in harsh environments of high-temperature up to 450°C, and high gamma-ray radiation up to over 100 Mrad, were investigated. At high temperature, field effect mobility increased as proportional to T3/2, and threshold voltage was shifted with temperature coefficients of -4.3 mV/K and -2.6 mV/K for oxide thicknesses of 10 nm and 20 nm, respectively. After Co60 gamma-ray exposure of 113 Mrad, the field effect mobility was varied within 8% for oxide thickness of 10 nm, however for 20 nm oxide thickness, this variation was 26%. The threshold voltage shifts were within 6%.


Author(s):  
X. Zhang ◽  
Y. Pan ◽  
T.T. Meek

Industrial microwave heating technology has emerged as a new ceramic processing technique. The unique advantages of fast sintering, high density, and improved materials properties makes it superior in certain respects to other processing methods. This work presents the structure characterization of a microwave sintered ceramic matrix composite.Commercial α-alumina powder A-16 (Alcoa) is chosen as the matrix material, β-silicon carbide whiskers (Third Millennium Technologies, Inc.) are used as the reinforcing element. The green samples consisted of 90 vol% Al2O3 powder and 10 vol% ultrasonically-dispersed SiC whiskers. The powder mixture is blended together, and then uniaxially pressed into a cylindrical pellet under a pressure of 230 MPa, which yields a 52% green density. The sintering experiments are carried out using an industry microwave system (Gober, Model S6F) which generates microwave radiation at 2.45 GHz with a maximum output power of 6 kW. The composites are sintered at two different temperatures (1550°C and 1650°C) with various isothermal processing time intervals ranging from 10 to 20 min.


Sign in / Sign up

Export Citation Format

Share Document