scholarly journals Channel segregation during columnar solidification: Relation between mushy zone instability and mush permeability

Author(s):  
Alok Kumar ◽  
Miha Založnik ◽  
Hervé Combeau ◽  
Gérard Lesoult ◽  
Arvind Kumar
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Dianzhong Li ◽  
Xing-Qiu Chen ◽  
Paixian Fu ◽  
Xiaoping Ma ◽  
Hongwei Liu ◽  
...  

Abstract Channel segregation, which is featured by the strip-like shape with compositional variation in cast materials due to density contrast-induced flow during solidification, frequently causes the severe destruction of homogeneity and some fatal damage. An investigation of its mechanism sheds light on the understanding and control of the channel segregation formation in solidifying metals, such as steels. Until now, it still remains controversial what composes the density contrasts and, to what extent, how it affects channel segregation. Here we discover a new force of inclusion flotation that drives the occurrence of channel segregation. It originates from oxide-based inclusions (Al2O3/MnS) and their sufficient volume fraction-driven flotation becomes stronger than the traditionally recognized inter-dendritic thermosolutal buoyancy, inducing the destabilization of the mushy zone and dominating the formation of channels. This study uncovers the mystery of oxygen in steels, extends the classical macro-segregation theory and highlights a significant technological breakthrough to control macrosegregation.


2020 ◽  
Author(s):  
Olga M. Zhukova ◽  
Irina G. Nizovtseva ◽  
Eugeny V. Pavlyuk ◽  
Ilya O. Starodumov ◽  
Alexander A. Ivanov
Keyword(s):  

2020 ◽  
Vol 510 ◽  
pp. 166927
Author(s):  
W.L. Hu ◽  
Y.X. Zhang ◽  
G. Yuan ◽  
X.M. Zhang ◽  
J.H. Zhao ◽  
...  

2010 ◽  
Vol 649 ◽  
pp. 399-408 ◽  
Author(s):  
R.G. Erdmann ◽  
D.R. Poirier ◽  
A.G. Hendrick

When modeled at macroscopic length scales, the complex dendritic network in the solid-plus-liquid region of a solidifying alloy (the “mushy zone”) has been modeled as a continuum based on the theory of porous media. The most important property of a porous medium is its permeability, which relates the macroscopic pressure gradient to the throughput of fluid flow. Knowledge of the permeability of the mushy zone as a function of the local volume-fraction of liquid and other morphological parameters is thus essential to successfully modeling the flow of interdendritic liquid during alloy solidification. In current continuum models, the permeability of the mushy zone is given as a deterministic function of (1) the local volume fraction of liquid and (2) a characteristic length scale such as the primary dendrite arm spacing or the reciprocal of the specific surface area of the solid-liquid interface. Here we first provide a broad overview of the experimental data, mesoscale numerical flow simulations, and resulting correlations for the deterministic permeability of both equiaxed and columnar mushy zones. A extended view of permeability in mushy zones which includes the stochastic nature of permeability is discussed. This viewpoint is the result of performing extensive numerical simulations of creeping flow through random microstructures. The permeabilities obtained from these simulations are random functions with spatial autocorrelation structures, and variations in the local permeability are shown to have dramatic effects on the flow patterns observed in such microstructures. Specifically, it is found that “lightning-like” patterns emerge in the fluid velocity and that the flows in such geometries are strongly sensitive to small variations in the solid structure. We conclude with a comparison of deterministic and stochastic permeabilities which suggests the importance of incorporating stochastic descriptions of the permeability of the mushy zone in solidification modeling.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Xiangjun Xu ◽  
Rui Hu ◽  
Junpin Lin ◽  
Jian Guo

High Nb-containing TiAl alloys have good oxidation resistance and mechanical properties, but the microstructure and the properties are substantially affected by the segregation. To quantitatively investigate the segregation behavior of Al during solidification, microstructures of directionally solidified (DS) Ti-45Al-8Nb (in atomic percent) alloy prepared at withdrawing rates of 30 μm/s and 200 μm/s and a temperature gradient of 4200 K/m were observed by optical microscope and electronic probe microanalyzer. The microsegregations were characterized by wave dispersive spectroscopy. The results show that the DS ingots include the no melting zone, directionally solidified zone with columnar grains, mushy zone, and quenched liquid zone. The primary dendritic arm spacings are 353 μm and 144 μm, respectively, for the two ingots. But the solidified microstructures of the ingots are large lamellar colonies, which contain a few B2 patches and γ bands induced by microsegregation. From dendritic zone to columnar zone, the volume fractions of B2 patches and γ bands decrease. The segregation extents of Al and Nb decrease with the increase of solidification rate. There exists an obvious back diffusion process of Al during solidification and cooling after solidification. According to evolution of Al concentration profiles from mushy zone to columnar grain zone, interdiffusion coefficient for Al in β-Ti at near solidus temperature is semiquantitatively calculated, and the value is (6 – 11) × 10−11 m2/s.


2017 ◽  
Vol 141 ◽  
pp. 206-216 ◽  
Author(s):  
A.B. Phillion ◽  
M. Založnik ◽  
I. Spindler ◽  
N. Pinter ◽  
C.-A. Aledo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document