Numerical simulation of cooling performance of heat sink designed based on symmetric and asymmetric leaf veins

Author(s):  
Yi Peng ◽  
Xiong Yang ◽  
Zhibin Li ◽  
Shaobo Li ◽  
Bin Cao
Author(s):  
Yanfeng Fan ◽  
Ibrahim Hassan

High heat fluxes have been created by the semiconductor devices due to the high power generation and shrank size. The large heat flux causes the circuit to exceed its allowable temperature and may experience both working efficiency loss and irreversible damage due to excess in their temperatures. In this paper, a swirl microchannel heat sink is designed to dissipate the large heat flux from the devices. The numerical simulation is carried out to investigate the cooling performance. Uniform heating boundary condition is applied and single phase water is selected as coolant. The present micro heat sink applies multiple swirl microchannels positioned in a circular flat plate to enhance the heat convection by creating the secondary flow at high Reynolds numbers. Copper is selected as the material of heat sink. The channel depth and width are fixed as 0.5 mm and 0.4 mm, respectively. The heat is injected into the system from the bottom of heat sink at the heat fluxes from 10 to 60 W/cm2. Flow is supplied from the top of micro heat sink through a jet hole with a diameter of 2 mm and enters swirl microchannels at the volume flow rates varying from 47 to 188 ml/min. The cooling performances of swirl microchannel heat sinks with different curvatures and channel numbers are evaluated based on the targets of low maximum temperature, temperature gradient and pressure drop.


Author(s):  
Yanfeng Fan ◽  
Ibrahim Hassan

A novel micro heat sink applying the jet-impingement and cross flow is proposed to dissipate the heat from the electrical devices. Six hotspots of 2 mm × 2 mm are positioned on a flat plate of 25.4 mm × 25.4 mm. The area of flat plate except the hotspots is provided a constant heat flux of 20 W/cm2 as background heating source among cases. Four heat fluxes from 40 to 100 W/cm2 on the hotspots are tested to simulate the different operation conditions. The cross flow is used to remove the background heat flux and jet flow is supplied into the swirl microchannel, located at the right top of hotspot, to dissipate the large heat flux from hotspots. The channel depth is 0.5 mm and the width of swirl microchannel is 0.38 mm. The cross flow and jet flow velocity vary from 0.1 m/s to 0.5 m/s and from 0.5 m/s to 2 m/s, respectively. The effects of cross flow and jet flow on the cooling performance are investigated by numerical simulation. The local heat transfer coefficient and Nusselt number are calculated to evaluate the cooling performance of proposed micro heat sink for the targets of low maximum temperature, temperature gradient and pressure drop. The results show that the maximum temperature of the proposed design occurred at the outlet is approximately 65 °C among tested cases. The corresponding pressure drop is 5.5 kPa. The overall thermal resistance reaches as small as 0.23 K/W.


2011 ◽  
Vol 1 (9) ◽  
pp. 65-67
Author(s):  
Pritesh S Patel ◽  
◽  
Prof. Dattatraya G Subhedar ◽  
Prof. Kamlesh V Chauhan

Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


2022 ◽  
Vol 48 ◽  
pp. 103882
Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Hamza Faraji ◽  
Pouyan Talebizadehsardari ◽  
Muhammad Anser Bashir ◽  
...  

2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1877-1884 ◽  
Author(s):  
Diego Alarcón ◽  
Eduardo. Balvís ◽  
Ricardo Bendaña ◽  
Alberto Conejero ◽  
de Fernández ◽  
...  

We present a detailed study of heating and cooling processes in LED luminaires with passive heat sinks. Our analysis is supported by numerical simulations as well as experimental measurements, carried on commercial systems used for outdoor lighting. We have focused our analysis on the common case of a single LED source in thermal contact with an aluminum passive heat sink, obtaining an excellent agreement with experimental measurements and the numerical simulations performed. Our results can be easily expanded, without loss of generality, to similar systems.


Sign in / Sign up

Export Citation Format

Share Document