Thermal degradation of the multilayer Mo/HfO2 emitter induced by the oxygen diffusion at high temperature in vacuum

Author(s):  
Yingshi Zhang ◽  
Qi Zhang ◽  
Qilin Cai ◽  
Qing Ye ◽  
Xi Wu
1998 ◽  
Vol 12 (29n31) ◽  
pp. 3216-3219 ◽  
Author(s):  
M. Ausloos ◽  
S. Dorbolo

A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2T c where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.


1999 ◽  
Vol 604 ◽  
Author(s):  
H. Fritze ◽  
H. L. Tuller ◽  
G. Borchardt ◽  
T. Fukuda

AbstractMaterials such as langasite (La3Ga5SiO14) and related compounds are promising candidates for piezoelectric applications at high temperatures. In particular, langasite does not exhibit phase transformations up to the melting point of 1470 °C. Langasite was investigated with respect to potential applications in high temperature resonator devices. In contrast to current resonator materials, we have observed bulk oscillations at temperatures of up to 750 °C in langasite devices. At 700 °C the mass load response for 0.78 mm thick resonators is approximately 0.10 µg/Hz.At elevated temperatures, the bulk resistivity of the resonator devices cannot be neglected due to attenuation of the resonance signal. Therefore, the temperature dependence of the electrical properties of langasite resonator devices, including bulk resistivity, capacity and resonance frequency were measured and are presented. The electrical conductivity is characterized by an activation energy of 105 kJ/mol. In order to confirm langasites stability with respect to oxidation-reduction reactions, we examined the oxygen diffusivity by measuring 18O tracer profiles by SIMS. The diffusivity along the Y-axis is given by D = 5-10−5 exp(-140 kJ/mol / RT) cm2/s in the temperature range from 500 to 800 °C. Langasite shows low oxygen diffusion coefficients with respect to other materials which might be investigated using a langasite microbalance. This would, for example, enable oxygen diffusion kinetics to be examined in YBa2Cu3O6 at 600 °C by means of 18O/16O exchange.


1988 ◽  
Vol 65 (5) ◽  
pp. 881-888 ◽  
Author(s):  
M. A. Fomishkin ◽  
V. Yu. Tonkov ◽  
Yu. N. Dolgov ◽  
K. V. Kulikova ◽  
N. G. Kulikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document