Thermal–economic–environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell–gas turbine hybrid system

2012 ◽  
Vol 37 (24) ◽  
pp. 19111-19124 ◽  
Author(s):  
Ali Shirazi ◽  
Mehdi Aminyavari ◽  
Behzad Najafi ◽  
Fabio Rinaldi ◽  
Majid Razaghi
Author(s):  
Shivom Sharma ◽  
François Maréchal

Chemical process optimization problems often have multiple and conflicting objectives, such as capital cost, operating cost, production cost, profit, energy consumptions, and environmental impacts. In such cases, multi-objective optimization (MOO) is suitable in finding many Pareto optimal solutions, to understand the quantitative tradeoffs among the objectives, and also to obtain the optimal values of decision variables. Gaseous fuel can be converted into heat, power, and electricity, using combustion engine, gas turbine (GT), or solid oxide fuel cell (SOFC). Of these, SOFC with GT has shown higher thermodynamic performance. This hybrid conversion system leads to a better utilization of natural resource, reduced environmental impacts, and more profit. This study optimizes performance of SOFC–GT system for maximization of annual profit and minimization of annualized capital cost, simultaneously. For optimal SOFC–GT designs, the composite curves for maximum amount of possible heat recovery indicate good performance of the hybrid system. Further, first law energy and exergy efficiencies of optimal SOFC–GT designs are significantly better compared to traditional conversion systems. In order to obtain flexible design in the presence of uncertain parameters, robust MOO of SOFC–GT system was also performed. Finally, Pareto solutions obtained via normal and robust MOO approaches are considered for parametric uncertainty analysis with respect to market and operating conditions, and solution obtained via robust MOO found to be less sensitive.


2012 ◽  
Vol 138 (4) ◽  
pp. 205-214 ◽  
Author(s):  
Hsiao-Wei D. Chiang ◽  
Chih-Neng Hsu ◽  
Wu-Bin Huang ◽  
Chien-Hsiung Lee ◽  
Wei-Ping Huang ◽  
...  

2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.


Sign in / Sign up

Export Citation Format

Share Document