High performance Ni–Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process

2014 ◽  
Vol 39 (34) ◽  
pp. 19747-19752 ◽  
Author(s):  
Kai Li ◽  
Xin Wang ◽  
Lichao Jia ◽  
Dong Yan ◽  
Jian Pu ◽  
...  
Author(s):  
Alessandra Sanson ◽  
Edoardo Roncari ◽  
Stefano Boldrini ◽  
Patrizia Mangifesta ◽  
Lioudmila Doubova

Gadolina doped ceria (GDC) is a promising electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFC). Dense layers of this material can be economically deposited by screen printing. However, the inks for this technique generally use organic compounds that can raise health and safety issues, as well as economical issues. In order to obtain a low-cost alternative to the generally accepted organic-based ink, four different blends of binders were considered to prepare water-based GDC inks. The systems were deposited onto green NiO/GDC anodes produced by tape casting and treated at 1673 K for 4 h. By choosing the right combination of solvents and binders, it was possible to obtain a dense crack-free film of GDC from a water-based system.


2006 ◽  
Vol 21 (6) ◽  
pp. 1561-1569 ◽  
Author(s):  
A. Sanson ◽  
D. Gardini ◽  
G. Montanari ◽  
C. Galassi ◽  
E. Roncari

Nanostructured films of TiO2 are becoming more and more attractive as a consequence of their improved sensing properties. Screen printing represents an important low-cost alternative for the production of high-performance devices for the automotive industry. However, to obtain films with superior properties, the composition and each step of the ink production must be carefully controlled. Milling strongly influences the rheological properties of the ink and, as a consequence, the quality of the deposited film. The as-prepared ink was homogenized in a four steps-process with a three-roll mill, and the rheological properties at each intermediate stage were measured. The results showed the dramatic effect of the milling on the flow properties of the nanoink and suggested the importance of a careful control of this step. The rheological behavior of the inks was explained using the basic idea of the transient network theory (TNT) for physically cross-linked networks of polymer solutions. Only an optimized cycle of milling can assure the necessary reproducibility of the ink properties as well as their time stability.


2021 ◽  
Author(s):  
D. R. Lavanya ◽  
G. P. Darshan ◽  
J. Malleshappa ◽  
H. B. Premkumar ◽  
S. C. Sharma ◽  
...  

Abstract Engineering of single material with multidirectional applications is of crucial for improving the productivity, low cost, flexibility and least power consumption, etc. To achieve these requirements, novel design structures and high performance materials are in urgent need. Lanthanide-doped nanophosphors have greatest strengths and ability in order to tuning its applications in various dimensions. However, nanophosphor applications in latent fingerprints visualization, anti-counterfeiting and luminescent gels/films are still in its infancy. This study demonstrated a simple strategy to enhance the luminescence of Tb3+ doped (1-11 mol %) La2Zr2O7 nanophosphors by conjugating the fluxes via simple solution combustion route. The photoluminescence spectra reveal intense peaks at ~ 491, 546, 587 and 622 nm arises from 5D4◊7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions, respectively. The highest emission intensity was achieved in the NH4Cl flux assisted nanophosphor as compared to NaBr and NH4F. The colorimetric images of fingerprints visualized using optimized nanophosphor on forensic related surfaces exhibit level –III ridge details, including sweat pores, width of the ridges, bifurcation angle, successive distance between sweat pores, etc. These results are decisive parameters which clearly supports the statement “no two persons have ever been found to have the same fingerprints”. The anti-counterfeiting security ink was formulated using nanophosphor and designed various patterns by simple screen printing and dip pen technology. The encoded information was decrypted only under ultraviolet 254 nm light. All the designed patterns are not just what it looks/feels like and how it works. As a synergetic contribution of enhanced luminescence of the prepared nanophosphor, the fabricated green-emissive films display excellent flexibility, uniformity and transparency in the normal and ultraviolet 254 nm light illumination. Aforementioned results revealed that prepared NH4Cl flux assisted La2Zr2O7: Tb3+(7 mol %) NPs are considered to be best candidate for multi-dimensional applications.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document