scholarly journals Theoretical study of H2 adsorption on metal-doped graphene sheets with nitrogen-substituted defects

2015 ◽  
Vol 40 (41) ◽  
pp. 14154-14162 ◽  
Author(s):  
Dewei Rao ◽  
Yunhui Wang ◽  
Zhaoshun Meng ◽  
Shanshan Yao ◽  
Xuan Chen ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10891-10901
Author(s):  
Gaurav Tatrari ◽  
Chetna Tewari ◽  
Manoj Karakoti ◽  
Mayank Pathak ◽  
Ritu Jangra ◽  
...  

This work reports a facile, eco-friendly, and cost-effective mass-scale synthesis of metal-doped graphene sheets (MDGs) using agriculture waste of Quercus ilex leaves for supercapacitor applications.


2014 ◽  
Vol 28 (30) ◽  
pp. 1450237 ◽  
Author(s):  
F. Nasehnia ◽  
M. Seifi

Adsorption of molecular oxygen with a triplet ground state on Fe -, Co -, Ni -, Ru -, Rh -, Pd -, OS -, Ir - and Pt -doped graphene is studied using density functional theory (DFT) calculations. The calculations show that O 2 molecule is chemisorbed on the doped graphene sheets with large adsorption energies ranging from -0.653 eV to -1.851 eV and the adsorption process is irreversible. Mulliken atomic charge analysis of the structure shows that charge transfer from doped graphene sheets to O 2 molecule. The amounts of transferred charge are between 0.375e- to 0.650e-, indicating a considerable change in the structures conductance. These results imply that the effect of O 2 adsorption on transition metal-doped graphene structures can alter the possibility of using these materials as a toxic-gas (carbon monoxide, hydrogen fluoride, etc.) sensor.


2019 ◽  
Vol 118 (7) ◽  
pp. e1652368 ◽  
Author(s):  
Weiguang Chen ◽  
Gao Zhao ◽  
Bingjie Wu ◽  
Yanan Tang ◽  
Da Teng ◽  
...  

2018 ◽  
Vol 1134 ◽  
pp. 37-46 ◽  
Author(s):  
Anand Mohan Verma ◽  
Kushagra Agrawal ◽  
Nanda Kishore

2018 ◽  
Vol 69 (6) ◽  
pp. 1468-1472
Author(s):  
Radu Mirea ◽  
Mihai Iordoc ◽  
Gabriela Oprina ◽  
Gimi Rimbu

The paper aims to present the investigation of H2 adsorption capacity in metal doped nanostructured materials, by using two methods. Carbonic materials are considered to be one of the most promising materials to be used for hydrogen adsorption and storage. They have different applications and one of the most important is considered to be fuel cells technology. By using metals for doping these materials, the adsorption capacity increases, thus approaching the target of 6.5% weight ratio of H2 adsorbed in a substrate. Within these investigations multi-wall nanotubes and poly-aniline have been used as substrates. The poly-aniline has been prepared and doped in laboratory while the nanotubes used in experiments have been purchased from the market and afterwards doped in laboratory. The doping procedure consists of a physical-chemical method which involves salts of the metal for doping and the use of ultrasounds in order to activate the substrate for doping. The adsorption capacity of the carbonic materials has been determined by using spill over phenomena in a PCT Pro-User apparatus, provided by SETARAM and also by cyclic voltametry, by using VoltaLab-40 apparatus. In order to investigate the adsorption capacity of the nanostructured carbonic materials, the experiments have been carried out at different pressures. Both substrates have been characterized in order to determine their porosity, BET surface and structure. The collected data have been processed by using the PCT Pro-User apparatus�s software. The results have been compared with the available data from literature and a good consistency was found.


Author(s):  
Xu Han ◽  
Zeyun Zhang ◽  
Xuefei Xu

To suppress the shuttle effect of lithium polysulfides and promote fast kinetics of charge−discharge process in Li−S batteries, it is essential to search promising catalysts with sufficient stability and high...


Sign in / Sign up

Export Citation Format

Share Document