Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use

2018 ◽  
Vol 43 (9) ◽  
pp. 4265-4275 ◽  
Author(s):  
Dayana D'Arc de Fátima Palhares ◽  
Luiz Gustavo Martins Vieira ◽  
João Jorge Ribeiro Damasceno
ChemSusChem ◽  
2016 ◽  
Vol 9 (10) ◽  
pp. 1200-1208 ◽  
Author(s):  
Biljana Šljukić ◽  
Diogo M. F. Santos ◽  
Milica Vujković ◽  
Luís Amaral ◽  
Raquel P. Rocha ◽  
...  

Author(s):  
Qiucheng Xu ◽  
Jiahao Zhang ◽  
Haoxuan Zhang ◽  
Liyue Zhang ◽  
Ling Chen ◽  
...  

Alkaline water splitting, especially the anion-exchange-membrane based water electrolysis, is an attractive way for low-cost and scalable H2 production. Green electricity-driven alkaline water electrolysis is requested to develop highly-efficient electrocatalysts...


Author(s):  
Katherine Stewart ◽  
Laurianne Lair ◽  
Brenda De La Torre ◽  
Nguyen L. Phan ◽  
Rupak Das ◽  
...  

2018 ◽  
Vol 25 ◽  
pp. 54-61 ◽  
Author(s):  
S. Shiva Kumar ◽  
S.U.B. Ramakrishna ◽  
S. Vijaya Krishna ◽  
K. Srilatha ◽  
B. Rama Devi ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1336 ◽  
Author(s):  
Alejandro N. Colli ◽  
Hubert H. Girault ◽  
Alberto Battistel

Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities, and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel, and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 °C, which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 °C, which ran for one month at 300 mA cm−2. Finally, the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 °C and 1 A cm−2.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1634
Author(s):  
Jesús Rodríguez ◽  
Ernesto Amores

Although alkaline water electrolysis (AWE) is the most widespread technology for hydrogen production by electrolysis, its electrochemical and fluid dynamic optimization has rarely been addressed simultaneously using Computational Fluid Dynamics (CFD) simulation. In this regard, a two-dimensional (2D) CFD model of an AWE cell has been developed using COMSOL® software and then experimentally validated. The model involves transport equations for both liquid and gas phases as well as equations for the electric current conservation. This multiphysics approach allows the model to simultaneously analyze the fluid dynamic and electrochemical phenomena involved in an electrolysis cell. The electrical response was evaluated in terms of polarization curve (voltage vs. current density) at different operating conditions: temperature, electrolyte conductivity, and electrode-diaphragm distance. For all cases, the model fits very well with the experimental data with an error of less than 1% for the polarization curves. Moreover, the model successfully simulates the changes on gas profiles along the cell, according to current density, electrolyte flow rate, and electrode-diaphragm distance. The combination of electrochemical and fluid dynamics studies provides comprehensive information and makes the model a promising tool for electrolysis cell design.


Sign in / Sign up

Export Citation Format

Share Document