Experimental study of flame propagation across a perforated plate

2018 ◽  
Vol 43 (17) ◽  
pp. 8524-8533 ◽  
Author(s):  
Quan Li ◽  
Xuxu Sun ◽  
Shouxiang Lu ◽  
Zhi Zhang ◽  
Xing Wang ◽  
...  
2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Siti Zubaidah Sulaiman ◽  
Rafiziana Md Kasmani ◽  
A. Mustafa

Flame propagation in a closed pipe with diameter 0.1 m and 5.1 m long, as well as length to diameter ratio (L/D) of 51, was studied experimentally. Hydrogen/air, acetylene/air and methane/air with stoichiometric concentration were used to observe the trend of flame propagation throughout the pipe. Experimental work was carried out at operating condition: pressure 1 atm and temperature 273 K. Results showed that all fuels are having a consistent trend of flame propagation in one-half of the total pipe length in which the acceleration is due to the piston-like effect. Beyond the point, fuel reactivity and tulip phenomenon were considered to lead the flame being quenched and decrease the overpressures drastically. The maximum overpressure for all fuels are approximately 1.5, 7, 8.5 barg for methane, hydrogen, and acetylene indicating that acetylene explosion is more severe. 


Author(s):  
A’rasy Fahruddin

HHO merupakan gas hasil elektrolisa air yang dapat digunakan sebagai bahan bakar tambahan pada motor bakar. Penelitian ini bertujuan mengetahui karakteristik generator HHO menggunakan elektroda pelat berlubang. Elektroda yang dipakai berupa pelat aluminium dengan ukuran 60 x 60 x 0.5 mm3 dengan variasi tanpa lubang, 4 lubang, 6 lubang, dan 9 lubang. Masing-masing lubang berdiameter 4 mm. Variasi tegangan input 3,5; 6; 7,5; 9 Volt. Karakteristik yang diuji meliputi daya input, debit, dan efisiensi generator HHO. Hasil yang didapatkan dari penelitian ini adalah bahwa debit gas HHO yang terbesar dihasilkan dengan elektroda 9 lubang yaitu sebesar 5,77 cc/min dengan daya input 4,59 Watt. Sedangkan efisiensi generator tertinggi juga dihasilkan dengan elektroda 9 lubang yang mampu mencapai efisiensi 63,16 % dengan daya input 0,52 Watt.


Author(s):  
Himanshu Tyagi ◽  
Rui Liu ◽  
David S.-K. Ting ◽  
Clifton R. Johnston

The study of vortex shedding from a sphere assumes an important role because of its relevance to numerous aerodynamic and hydrodynamic applications. Parameters such as coefficient of drag and static pressure distribution are largely influenced by vortex shedding, and it is found by past studies that the freestream turbulence can interact and alter the vortex formation and shedding drastically. Most of these studies, however, were conducted in the low Reynolds number regime and the vortex shedding results had been described only qualitatively. To better understand the aerodynamics of a sphere in turbulent flow, an experimental study was initiated in a low speed wind tunnel to quantify the vortex shedding characteristics. The Reynolds number of the flow, based on the diameter of the sphere (d), was set at 3.3 × 104, 5 × 104 and 6.6 × 104 by varying the mean flow velocity. The sphere was placed at 20D (= 7.5d) downstream from a perforated plate, where D = 37.5 mm is the size of the holes in the perforated plate, uniquely designed for generating near-isotropic turbulence. Hot-wire measurements were taken at 10D (= 3.75d), 20D (= 7.5d) and 30D (= 11.25d) downstream of the sphere in absence and presence of the perforated plate. The vortex shedding frequency was deduced from the instantaneous flow velocity data.


Fuel ◽  
2020 ◽  
Vol 262 ◽  
pp. 116678 ◽  
Author(s):  
Yijun Zhao ◽  
Wenda Zhang ◽  
Dongdong Feng ◽  
Pengxiang Wang ◽  
Shaozeng Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document