Production of hydrogen for export from wind and solar energy, natural gas, and coal in Australia

2020 ◽  
Vol 45 (7) ◽  
pp. 3899-3904 ◽  
Author(s):  
Alberto Boretti
2005 ◽  
Vol 128 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Stephan Möller ◽  
Dario Kaucic ◽  
Christian Sattler

Solar steam reforming of natural gas (NG) is a possibility to lower the cost for introducing renewable hydrogen production technologies to the market by a combination of fossil fuel and solar energy. It comprises the production of hydrogen from NG and steam that acts as a chemical storage for hydrogen and solar energy as the renewable energy source to heat up the system and set free the hydrogen. Using the solar reformer technology fuel savings of up to 40% compared to a conventional plant are expected. The CO2 emissions can be reduced accordingly. The cost study shows that hydrogen produced by solar reforming might cost between 4.5 and 4.7ct€∕kWh (LHV of H2) today. Therefore, it is only about 20% more expensive than conventionally produced hydrogen. Rising prices for NG will result in favorable conditions for the solar technology.


Author(s):  
Stephan Mo¨ller ◽  
Dario Kaucic ◽  
Christian Sattler

Today’s production of renewable hydrogen using energy sources such as solar and wind is too expensive compared with conventional production, normally by an order of magnitude. The high costs are a major bottleneck for the launch of the hydrogen economy. This paper will present a bypass of this bottleneck, which is a compromise between the use of fossil and solar energy: the solar steam reforming of natural gas (NG). It comprises the production of hydrogen from NG and the use of solar energy as the renewable source at low cost. Using the solar reformer technology for generation of hydrogen, we expect fuel savings of up to 40% compared to a conventional plant. Therefore, the CO2 emissions can be reduced accordingly. Based on the experiences in DLR solar reformers, which were successfully demonstrated at a level of few hundred kW in previous EC co-funded projects (e.g. SOLASYS), industrial plant layouts were developed. For a 50 MWth solar reforming plant a cost study was prepared. Two process layouts were investigated and the hydrogen costs were calculated. Sensitivity analyses of different parameters such as the natural gas prize were conducted. The conceptual layout of a solar driven hydrogen production plant comprises the innovative solar reformer followed by a water gas shift reactor and gas separation units. For the separation of hydrogen and carbon dioxide a PSA unit and gas washing unit using methyldiethanolamine (MDEA) are considered. The remaining methane rich gas is recycled to the process. The results of this cost study show that hydrogen produced by solar reforming costs between 4.5 and 4.7ct€ / kWh (LHV of H2). Therefore it is only about 20% more expensive than conventionally produced hydrogen. Increasing the cost of methane (NG) will result in favorable conditions for the solar hydrogen.


Author(s):  
Giacomo Bisio ◽  
Alessandro Bosio ◽  
Marco Cartesegna ◽  
Giuseppe Rubatto

The fossil fuel reserves are limited. In addition, usable energy supply has a considerable impact on the environment, even if some effects, which are usually alleged, are far from being fully established. Natural gas is often found in remote locations far from developed industrial nations. Where possible, the gas is transported by pipeline to the end user. However, where oceans separate the gas source and the user, or there are other difficulties, the only viable way to transport the gas is to convert it into liquid natural gas (LNG) and to convey it using insulated LNG tankers. This paper outlines the results of an examination of a complex system, employing solar energy, for the production of electrical energy and the vaporization and superheating of LNG. It is to be remarked that, differently from the usual combined systems, both the thermal source and the thermal sink are exergy sources.


2020 ◽  
Vol 10 (20) ◽  
pp. 6902-6909
Author(s):  
Karthika Pichaimuthu ◽  
Anirudha Jena ◽  
Ho Chang ◽  
Chaochin Su ◽  
Ru-Shi Liu

The production of hydrogen using solar energy via a photoelectrochemical system is an effective technique for meeting present clean energy needs.


Sign in / Sign up

Export Citation Format

Share Document