Preparation and evaluation of Ni/γ-Al2O3 catalysts promoted by alkaline earth metals in glycerol reforming with carbon dioxide

Author(s):  
Masoud Tavanarad ◽  
Mehran Rezaei ◽  
Fereshteh Meshkani
Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 812 ◽  
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has great potential for the better utilization of existing carbon resources via the transformation of spent carbon (CO2) to synthetic natural gas (CH4). Alkali and alkaline earth metals can serve both as promoters for methanation catalysts and as adsorbent phases upon the combined capture and methanation of CO2. Their promotion effect during methanation of carbon dioxide mainly relies on their ability to generate new basic sites on the surface of metal oxide supports that favour CO2 chemisorption and activation. However, suppression of methanation activity can also occur under certain conditions. Regarding the combined CO2 capture and methanation process, the development of novel dual-function materials (DFMs) that incorporate both adsorption and methanation functions has opened a new pathway towards the utilization of carbon dioxide emitted from point sources. The sorption and catalytically active phases on these types of materials are crucial parameters influencing their performance and stability and thus, great efforts have been undertaken for their optimization. In this review, we present some of the most recent works on the development of alkali and alkaline earth metal promoted CO2 methanation catalysts, as well as DFMs for the combined capture and methanation of CO2.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 353
Author(s):  
David Méndez-Mateos ◽  
V. Laura Barrio ◽  
Jesús M. Requies ◽  
José F. Cambra

In order to reduce greenhouse gas emissions, which are reaching alarming levels in the atmosphere, capture, recovery, and transformation of carbon dioxide emitted to methane is considered a potentially profitable process. This transformation, known as methanation, is a catalytic reaction that mainly uses catalysts based on noble metals such as Ru and, although with less efficiency, on transition metals such as Ni. In order to improve the efficiency of these conventional catalysts, the effect of adding alkaline earth metals (Ba, Ca, or Mg at 10 wt%) and lanthanides (La or Ce at 14 wt%) to nickel (13 wt%), ruthenium (1 wt%), or both-based catalysts has been studied at temperatures between 498 and 773 K and 10 bar pressure. The deactivation resistance in presence of H2S was also monitored. The incorporation of La into the catalyst produces interactions between active metal Ni, Ru, or Ru-Ni and the alumina support, as determined by the characterization. This fact results in an improvement in the catalytic activity of the 13Ni/Al2O3 catalyst, which achieves a methane yield of 82% at 680 K for 13Ni/14La-Al2O3, in addition to an increase in H2S deactivation resistance. Furthermore, 89% was achieved for 1Ru-13Ni/14La-Al2O3 at 651 K, but it showed to be more vulnerable to H2S presence.


Sign in / Sign up

Export Citation Format

Share Document