Investigation of colorless distributed combustion regime using a high internal recirculative combustor

Author(s):  
Alparslan Ilbas ◽  
Mustafa Bahadır Ozdemir ◽  
Serhat Karyeyen
Fuel ◽  
2017 ◽  
Vol 195 ◽  
pp. 113-122 ◽  
Author(s):  
Ahmed E.E. Khalil ◽  
Ashwani K. Gupta

2020 ◽  
Vol 219 ◽  
pp. 268-274 ◽  
Author(s):  
Kaidi Wan ◽  
Sandra Hartl ◽  
Luc Vervisch ◽  
Pascale Domingo ◽  
Robert S. Barlow ◽  
...  

2015 ◽  
Vol 162 (3) ◽  
pp. 759-773 ◽  
Author(s):  
Hugo Correia Rodrigues ◽  
Mark J. Tummers ◽  
Eric H. van Veen ◽  
Dirk J.E.M. Roekaerts

2021 ◽  
Vol 46 (17) ◽  
pp. 10518-10534
Author(s):  
Namsu Kim ◽  
Yongmo Kim ◽  
Mohammad Nazri Mohd Jaafar ◽  
Muhammad Roslan Rahim ◽  
Mazlan Said

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Ahmed O. Said ◽  
Ahmed E. E. Khalil ◽  
Ashwani K. Gupta

Colorless distributed combustion (CDC) has shown to provide ultra-low emissions of NO, CO, unburned hydrocarbons, and soot, with stable combustion without using any flame stabilizer. The benefits of CDC also include uniform thermal field in the entire combustion space and low combustion noise. One of the critical aspects in distributed combustion is fuel mixture preparation prior to mixture ignition. In an effort to improve fuel mixing and distribution, several schemes have been explored that includes premixed, nonpremixed, and partially premixed. In this paper, the effect of dual-location fuel injection is examined as opposed to single fuel injection into the combustor. Fuel distribution between different injection points was varied with the focus on reaction distribution and pollutants emission. The investigations were performed at different equivalence ratios (0.6–0.8), and the fuel distribution in each case was varied while maintaining constant overall thermal load. The results obtained with multi-injection of fuel using a model combustor showed lower emissions as compared to single injection of fuel using methane as the fuel under favorable fuel distribution condition. The NO emission from double injection as compared to single injection showed a reduction of 28%, 24%, and 13% at equivalence ratio of 0.6, 0.7, and 0.8, respectively. This is attributed to enhanced mixture preparation prior to the mixture ignition. OH* chemiluminescence intensity distribution within the combustor showed that under favorable fuel injection condition, the reaction zone shifted downstream, allowing for longer fuel mixing time prior to ignition. This longer mixing time resulted in better mixture preparation and lower emissions. The OH* chemiluminescence signals also revealed enhanced OH* distribution with fuel introduced through two injectors.


2015 ◽  
Vol 19 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Amir Mardani ◽  
Sadegh Tabejamaat

In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD) combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.


Sign in / Sign up

Export Citation Format

Share Document