Electrolyte flow optimization and performance metrics analysis of vanadium redox flow battery for large-scale stationary energy storage

Author(s):  
Zebo Huang ◽  
Anle Mu ◽  
Longxing Wu ◽  
Hang Wang ◽  
Yongjun Zhang
2011 ◽  
Vol 1 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1567
Author(s):  
Alejandro Clemente ◽  
Germán Andrés Ramos ◽  
Ramon Costa-Castelló

Redox flow batteries are one of the most relevant emerging large-scale energy storage technologies. Developing control methods for them is an open research topic; optimizing their operation is the main objective to be achieved. In this paper, a strategy that is based on regulating the output voltage is proposed. The proposed architecture reduces the number of required sensors. A rigorous design methodology that is based on linear H∞ synthesis is introduced. Finally, some simulations are presented in order to analyse the performance of the proposed control system. The results show that the obtained controller guaranties robust stability and performance, thus allowing the battery to operate over a wide range of operating conditions. Attending to the design specifications, the controlled voltage follows the reference with great accuracy and it quickly rejects the effect of sudden current changes.


Author(s):  
Anteneh Wodaje Bayeh ◽  
Daniel Manaye Kabtamu ◽  
Yo Chong Chang ◽  
Tadele Hunde Wondimu ◽  
H. C. Huang ◽  
...  

As one of the most promising electrochemical energy storage systems, the vanadium redox flow battery (VRFB) has received increasing attention owing to its attractive features for large-scale storage applications. However,...


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Purna C. Ghimire ◽  
Arjun Bhattarai ◽  
Tuti M. Lim ◽  
Nyunt Wai ◽  
Maria Skyllas-Kazacos ◽  
...  

Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, stable capacity and safety. Despite these advantages, the deployment of the vanadium battery has been limited due to vanadium and cell material costs, as well as supply issues. Improving stack power density can lower the cost per kW power output and therefore, intensive research and development is currently ongoing to improve cell performance by increasing electrode activity, reducing cell resistance, improving membrane selectivity and ionic conductivity, etc. In order to evaluate the cell performance arising from this intensive R&D, numerous physical, electrochemical and chemical techniques are employed, which are mostly carried out ex situ, particularly on cell characterizations. However, this approach is unable to provide in-depth insights into the changes within the cell during operation. Therefore, in situ diagnostic tools have been developed to acquire information relating to the design, operating parameters and cell materials during VRFB operation. This paper reviews in situ diagnostic tools used to realize an in-depth insight into the VRFBs. A systematic review of the previous research in the field is presented with the advantages and limitations of each technique being discussed, along with the recommendations to guide researchers to identify the most appropriate technique for specific investigations.


Sign in / Sign up

Export Citation Format

Share Document