scholarly journals Toxoplasma gondii SAG2 type III in an atypical presentation of ocular toxoplasmosis in Indonesia

2020 ◽  
Vol 96 ◽  
pp. 440-444
Author(s):  
Agnes Kurniawan ◽  
Ika Puspa Sari ◽  
Nora Harminarti ◽  
Lukman Edwar ◽  
Made Susiyanti
1996 ◽  
Vol 80 (12) ◽  
pp. 1099-1107 ◽  
Author(s):  
C E Pavesio ◽  
S Lightman

2002 ◽  
Vol 4 (2) ◽  
pp. 107-110 ◽  
Author(s):  
CC Powell ◽  
DL Kordick ◽  
MR Lappin

Infection by Toxoplasma gondii is very common in cats although most remain disease free. The factors that trigger development of uveitis in some cats infected with T gondii have not been elucidated, but infection by more than one organism may be contributory. In this study, cats chronically infected with T gondii were inoculated with Bartonella henselae followed by FHV-1 to test the hypothesis that immune stimulation by multiple infections will reactivate ocular toxoplasmosis. Anterior uveitis and chorioretinitis were not detected in the cats with chronic T gondii infection thus allowing rejection of the hypothesis using this experimental design.


Ocular toxoplasmosis (OT) is considered the most frequent form of infectious posterior uveitis and is caused by the protozoan parasite Toxoplasma gondii. Despite large advances in the field of OT, large gaps still exist in our knowledge concerning the epidemiology and pathophysiology of this potentially blinding infectious old disease. In this review, we aimed to investigate the current clinical understanding of OT, diagnosis treatment options.


2002 ◽  
Vol 35 (3) ◽  
pp. 215-219 ◽  
Author(s):  
Nilson Giraldi ◽  
Odilon Vidotto ◽  
Italmar Teodorico Navarro ◽  
João Luis Garcia ◽  
Liza Ogawa ◽  
...  

The occurrence of toxoplasmosis and enteroparasitosis was studied in 434 children from elementary schools in the rural and urban areas of Rolândia, Paraná State, Brazil. Sera and fecal samples from all the students were submitted to IFA for Toxoplasma gondii and coproparasitological tests, respectively. The children were tested by Amsler grid and 72 of them were examined for the presence of lesions compatible with ocular toxoplasmosis. Some variables were tested but none showed increased risk for toxoplasmosis. The distribution according to sex and age and also same other variables are presented and discussed. Correlations between Amsler's grid test, toxoplama RIFI, occurrence of eyes lesions and enteroparasitosis are also considered.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


2002 ◽  
Vol 195 (12) ◽  
pp. 1625-1633 ◽  
Author(s):  
Antonio Barragan ◽  
L. David Sibley

After oral ingestion, Toxoplasma gondii crosses the intestinal epithelium, disseminates into the deep tissues, and traverses biological barriers such as the placenta and the blood-brain barrier to reach sites where it causes severe pathology. To examine the cellular basis of these processes, migration of T. gondii was studied in vitro using polarized host cell monolayers and extracellular matrix. Transmigration required active parasite motility and the highly virulent type I strains consistently exhibited a superior migratory capacity than the nonvirulent type II and type III strains. Type I strain parasites also demonstrated a greater capacity for transmigration across mouse intestine ex vivo, and directly penetrated into the lamina propria and vascular endothelium. A subpopulation of virulent type I parasites exhibited a long distance migration (LDM) phenotype in vitro, that was not expressed by nonvirulent type II and type III strains. Cloning of parasites expressing the LDM phenotype resulted in substantial increase of migratory capacity in vitro and in vivo. The potential to up-regulate migratory capacity in T. gondii likely plays an important role in establishing new infections and in dissemination upon reactivation of chronic infections.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Joshua A. Kochanowsky ◽  
Kaitlin K. Thomas ◽  
Anita A. Koshy

ABSTRACT Polymorphic effector proteins determine the susceptibility of Toxoplasma gondii strains to IFN-γ-mediated clearance mechanisms deployed by murine host cells. However, less is known about the influence of these polymorphic effector proteins on IFN-γ-independent clearance mechanisms. Here, we show that deletion of one such polymorphic effector protein, ROP16, from a type III background leads to a defect in parasite growth and survival in unstimulated human fibroblasts and murine macrophages. Rescue of these defects requires a ROP16 with a functional kinase domain and the ability to activate a specific family of host cell transcription factors (STAT3, 5a, and 6). The growth and survival defects correlate with an accumulation of host cell reactive oxygen species (ROS) and are prevented by treatment with an ROS inhibitor. Exogenous activation of STAT3 and 6 suppresses host cell ROS production during infection with ROP16-deficient parasites and depletion of STAT6, but not STAT3 or 5a, causes an accumulation of ROS in cells infected with wild-type parasites. Pharmacological inhibition of NOX2 and mitochondrially derived ROS also rescues growth and survival of ROP16-deficient parasites. Collectively, these findings reveal an IFN-γ-independent mechanism of parasite restriction in human cells that is subverted by injection of ROP16 by type III parasites. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that infects up to one-third of the world’s population. Control of the parasite is largely accomplished by IFN-γ-dependent mechanisms that stimulate innate and adaptive immune responses. Parasite suppression of IFN-γ-stimulated responses has been linked to proteins that the parasite secretes into its host cell. These secreted proteins vary by T. gondii strain and determine strain-specific lethality in mice. How these strain-specific polymorphic effector proteins affect IFN-γ-independent parasite control mechanisms in human and murine cells is not well known. This study shows that one such secreted protein, ROP16, enables efficient parasite growth and survival by suppressing IFN-γ-independent production of ROS by human and mouse cells.


Sign in / Sign up

Export Citation Format

Share Document