scholarly journals Plastic flow and anisotropy of a low-carbon steel over a range of strain-rates

2018 ◽  
Vol 121 ◽  
pp. 157-171 ◽  
Author(s):  
Yannis P. Korkolis ◽  
Benjamin R. Mitchell ◽  
Michael R. Locke ◽  
Brad L. Kinsey
2009 ◽  
Vol 633-634 ◽  
pp. 471-480
Author(s):  
Masaki Tanaka ◽  
Kenji Higashida ◽  
Tomotsugu Shimokawa

Brittle-ductile transition (BDT) behaviour was investigated in low carbon steel deformed by an accumulative roll-bonding (ARB) process. The temperature dependence of its fracture toughness was measured by conducting four-point bending tests at various temperatures and strain rates. The fracture toughness increased while the BDT temperature decreased in the specimens deformed by the ARB process. Arrhenius plots between the BDT temperatures and the strain rates indicated that the activation energy for the controlling process of the BDT was not changed by the deformation with the ARB process. It was deduced that the decrease in the BDT temperature by grain refining was not due to the increase in the dislocation mobility controlled by short-range barriers. Quasi-three-dimensional simulations of dislocation dynamics, taking into account of crack tip shielding due to dislocations, were performed to investigate the effect of a dislocation source spacing along a crack front on the BDT. The simulation indicated that the BDT temperature is decreased with decreasing in the dislocation source spacing. Molecular dynamics simulations revealed that moving dislocations were impinged against grain boundaries and were reemitted from there with increasing strain. It indicates that grain boundaries can be new sources in ultra-fine grained materials, which increases toughness at low temperatures.


2016 ◽  
Vol 870 ◽  
pp. 60-65 ◽  
Author(s):  
S.A. Barannikova ◽  
Lev B. Zuev ◽  
A.V. Bochkareva ◽  
A.G. Lunev ◽  
Yu.V. Li ◽  
...  

Evolution of localized plastic deformation in tri-layered metal material casting consistng of the working part (layer) from austenitic stainless steel and bearing part from low-carbon steel was investigated. The pictures of localization of the plastic flow during the process of uniaxial tension were obtained by means of the digital image correlation method (DIC). Using optical microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for deformed samples of tri-layered metal. These were found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Lüdwik-Holomon equation. The analysis of the plastic flow stages and localized plastic deformation parameters was performed.


2007 ◽  
Vol 30 (1) ◽  
pp. 69-71 ◽  
Author(s):  
A Ray ◽  
P Barat ◽  
P Mukherjee ◽  
A Sarkar ◽  
S K Bandyopadhyay

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4821
Author(s):  
Lenka Kunčická ◽  
Miroslav Jopek ◽  
Radim Kocich ◽  
Karel Dvořák

Tristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s−1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.


1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Sign in / Sign up

Export Citation Format

Share Document