Time-resolved temperature field and fluid velocity field numerical simulation of plasma generated by long pulse laser induced transparent medium

Optik ◽  
2019 ◽  
Vol 184 ◽  
pp. 1-9 ◽  
Author(s):  
J.X. Cai ◽  
S.Q. Xia ◽  
G.Y. Jin
2003 ◽  
Vol 3 ◽  
pp. 246-254
Author(s):  
C.I. Mikhaylenko ◽  
S.F. Urmancheev

The behavior of a liquid flowing through a fixed bulk porous layer of a granular catalyst is considered. The effects of the nonuniformity of the fluid velocity field, which arise when the surface of the layer is curved, and the effect of the resulting inhomogeneity on the speed and nature of the course of chemical reactions are investigated by the methods of a computational experiment.


1993 ◽  
Vol 115 (3) ◽  
pp. 302-312 ◽  
Author(s):  
J. H. Terhune ◽  
K. Karim-Panahi

The free vibration of cylindrical shells filled with a compressible viscous fluid has been studied by numerous workers using the linearized Navier-Stokes equations, the fluid continuity equation, and Flu¨gge ’s equations of motion for thin shells. It happens that solutions can be obtained for which the interface conditions at the shell surface are satisfied. Formally, a characteristic equation for the system eigenvalues can be written down, and solutions are usually obtained numerically providing some insight into the physical mechanisms. In this paper, we modify the usual approach to this problem, use a more rigorous mathematical solution and limit the discussion to a single thin shell of infinite length and finite radius, totally filled with a viscous, compressible fluid. It is shown that separable solutions are obtained only in a particular gage, defined by the divergence of the fluid velocity vector potential, and the solutions are unique to that gage. The complex frequency dependence for the transverse component of the fluid velocity field is shown to be a result of surface interaction between the compressional and vortex motions in the fluid and that this motion is confined to the boundary layer near the surface. Numerical results are obtained for the first few wave modes of a large shell, which illustrate the general approach to the solution. The axial wave number is complex for wave propagation, the imaginary part being the spatial attenuation coefficient. The frequency is also complex, the imaginary part of which is the temporal damping coefficient. The wave phase velocity is related to the real part of the axial wave number and turns out to be independent of frequency, with numerical value lying between the sonic velocities in the fluid and the shell. The frequency dependencies of these parameters and fluid velocity field mode shapes are computed for a typical case and displayed in non-dimensional graphs.


2018 ◽  
Vol 38 (5) ◽  
pp. 0514005
Author(s):  
董渊 Dong Yuan ◽  
王頔 Wang Di ◽  
魏智 Wei Zhi ◽  
符泰然 Fu Tairan

Author(s):  
Ali Reza Mazaheri ◽  
Goodarz Ahmadi ◽  
Haifeng Zhang

Effects of bounce on particle transport, deposition and removal in turbulent channel flow are studied. The pseudo-spectral method is used to generate the instantaneous turbulent fluid velocity field by Direct Numerical Simulation (DNS) procedure. The particle equation of motion includes all the relevant hydrodynamic forces. In addition, simulation accounts for particle adhesion, resuspension and rebound processes. For particle bounce from the surface, the critical velocity is evaluated and is used in the analysis. Effects of bounce during particle-wall collisions on the deposition rate are also studied.


2020 ◽  
Vol 118 (7) ◽  
pp. 1576-1587 ◽  
Author(s):  
Yuka Sakuma ◽  
Toshihiro Kawakatsu ◽  
Takashi Taniguchi ◽  
Masayuki Imai

2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3153-3164 ◽  
Author(s):  
Hamid Mohammadiun ◽  
Vahid Amerian ◽  
Mohammad Mohammadiun ◽  
Iman Khazaee ◽  
Mohsen Darabi ◽  
...  

The steady-state, viscous flow and heat transfer of nanofluid in the vicinity of an axisymmetric stagnation point of a stationary cylinder with constant wall heat flux is investigated. The impinging free-stream is steady and with a constant strain rate, k ?. Exact solution of the Navier-Stokes equations and energy equation are derived in this problem. A reduction of these equations is obtained by use of appropriate transformations introduced in this research. The general self-similar solution is obtained when the wall heat flux of the cylinder is constant. All the previous solutions are presented for Reynolds number Re = k ?a2/2n f ranging from 0.1 to 1000, selected values of heat flux and selected values of particle fractions where a is cylinder radius and n f is kinematic viscosity of the base fluid. For all Reynolds numbers, as the particle fraction increases, the depth of diffusion of the fluid velocity field in radial direction, the depth of the diffusion of the fluid velocity field in z-direction, shear-stresses and pressure function decreases. However, the depth of diffusion of the thermal boundary-layer increases. It is clear by adding nanoparticles to the base fluid there is a significant enhancement in Nusselt number and heat transfer.


2018 ◽  
Vol 2018 (0) ◽  
pp. J0520105
Author(s):  
Miyu IWATA ◽  
Shuhei SUGIYAMA ◽  
Tomoya HOURA ◽  
Hirofumi HATTORI ◽  
Masato TAGAWA

Sign in / Sign up

Export Citation Format

Share Document