Performance enhancement of FSO communication system using machine learning for 5G/6G and IoT applications

Optik ◽  
2021 ◽  
pp. 168430
Author(s):  
Lepuri Jathin Sravan Kumar ◽  
Prabu Krishnan ◽  
Biradher Shreya ◽  
Sudhakar M.S.
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1615
Author(s):  
Zeeshan Ali Khan ◽  
Ubaid Abbasi ◽  
Sung Won Kim

Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 696
Author(s):  
Satyanarayana P ◽  
Charishma Devi. V ◽  
Sowjanya P ◽  
Satish Babu ◽  
N Syam Kumar ◽  
...  

Machine learning (ML) has been broadly connected to the upper layers of communication systems for different purposes, for example, arrangement of cognitive radio and communication network. Nevertheless, its application to the physical layer is hindered by complex channel conditions and constrained learning capacity of regular ML algorithms. Deep learning (DL) has been as of late connected for some fields, for example, computer vision and normal dialect preparing, given its expressive limit and advantageous enhancement ability. This paper describes about a novel use of DL for the physical layer. By deciphering a communication system as an auto encoder, we build up an essential better approach to consider communication system outline as a conclusion to-end reproduction undertaking that tries to together enhance transmitter and receiver in a solitary procedure. This DL based technique demonstrates promising execution change than traditional communication system.  


2021 ◽  
pp. 102685
Author(s):  
Parjanay Sharma ◽  
Siddhant Jain ◽  
Shashank Gupta ◽  
Vinay Chamola

SIMULATION ◽  
2018 ◽  
Vol 95 (8) ◽  
pp. 673-691 ◽  
Author(s):  
Bong Gu Kang ◽  
Kyung-Min Seo ◽  
Tag Gon Kim

Command and control (C2) and communication are at the heart of successful military operations in network-centric warfare. Interoperable simulation of a C2 system model and a communication (C) system model may be employed to interactively analyze their detailed behaviors. However, such simulation would be inefficient in simulation time for analysis of combat effectiveness of the C2 model against possible input combinations while considering the communication effect in combat operations. This study proposes a discrete event dynamic surrogate model (DEDSM) for the C model, which would be integrated with the C2 model and simulated. The proposed integrated simulation reduces execution time markedly in analysis of combat effectiveness without sacrificing the accuracy reflecting the communication effect. We hypothesize the DEDSM as a probabilistic priority queuing model whose semantics is expressed in a discrete event systems specification model with some characteristic functions unknown. The unknown functions are identified by machine learning with a data set generated by interoperable simulation of the C2 and C models. The case study with the command, control, and communication system of systems first validates the proposed approach through an equivalence test between the interoperable simulation and the proposed one. It then compares the simulation execution times and the number of events exchanged between the two simulations.


Sign in / Sign up

Export Citation Format

Share Document