Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness

Author(s):  
Xinmin Lai ◽  
Hongtao Li ◽  
Chengfeng Li ◽  
Zhongqin Lin ◽  
Jun Ni
Author(s):  
Feng Qin ◽  
Xibing Gong ◽  
Kevin Chou

In machining using a diamond-coated tool, the tool geometry and process parameters have compound effects on the thermal and mechanical states in the tools. For example, decreasing the edge radius tends to increase deposition-induced residual stresses at the tool edge interface. Moreover, changing the uncut chip thickness to a small-value range, comparable or smaller than the edge radius, will involve the so-called size effect. In this study, a developed 2D cutting simulation that incorporates deposition residual stresses was applied to evaluate the size effect, at different cutting speeds, on the tool stresses, tool temperatures, specific cutting energy as well as the interface stresses around a cutting edge. The size effect on the radial normal stress is more noticeable at a low speed. In particular, a large uncut chip thickness has a substantially lower stress. On the other hand, the size effect on the circumferential normal stress is more noticeable at a high speed. At a small uncut chip thickness, the stress is largely compressive.


2005 ◽  
Vol 128 (2) ◽  
pp. 474-481 ◽  
Author(s):  
X. Liu ◽  
R. E. DeVor ◽  
S. G. Kapoor

In micromachining, the uncut chip thickness is comparable or even less than the tool edge radius and as a result a chip will not be generated if the uncut chip thickness is less than a critical value, viz., the minimum chip thickness. The minimum chip thickness effect significantly affects machining process performance in terms of cutting forces, tool wear, surface integrity, process stability, etc. In this paper, an analytical model has been developed to predict the minimum chip thickness values, which are critical for the process model development and process planning and optimization. The model accounts for the effects of thermal softening and strain hardening on the minimum chip thickness. The influence of cutting velocity and tool edge radius on the minimum chip thickness has been taken into account. The model has been experimentally validated with 1040 steel and Al6082-T6 over a range of cutting velocities and tool edge radii. The developed model has then been applied to investigate the effects of cutting velocity and edge radius on the normalized minimum chip thickness for various carbon steels with different carbon contents and Al6082-T6.


Author(s):  
Fernando Brandão de Oliveira ◽  
Alessandro Roger Rodrigues ◽  
Reginaldo Teixeira Coelho ◽  
Adriano Fagali de Souza

2012 ◽  
Vol 504-506 ◽  
pp. 1269-1274 ◽  
Author(s):  
François Ducobu ◽  
Edouard Rivière-Lorphèvre ◽  
Enrico Filippi

Micro-milling with a cutting tool is a manufacturing technique that allows production of parts ranging from several millimeters to several micrometers. The technique is based on a downscaling of macroscopic milling process. Micro-milling is one of the most effective process to produce complex three-dimensional micro-parts, including sharp edges and with a good surface quality. Reducing the dimensions of the cutter and the cutting conditions requires taking into account physical phenomena that can be neglected in macro-milling. These phenomena include a size effect (nonlinear rising of specific cutting force when chip thickness decreases), the minimum chip thickness (under a given dimension, no chip can be machined) and the heterogeneity of the material (the size of the grains composing the material is significant as compared to the dimension of the chip). The aim of this paper is to introduce some phenomena, appearing in micromilling, in the mechanistic dynamic simulation software ‘dystamill’ developed for macro-milling. The software is able to simulate the cutting forces, the dynamic behavior of the tool and the workpiece and the kinematic surface finish in 2D1/2 milling operation (slotting, face milling, shoulder milling,…). It can be used to predict chatter-free cutting condition for example. The mechanistic model of the cutting forces is deduced from the local FEM simulation of orthogonal cutting. This FEM model uses the commercial software ABAQUS and is able to simulate chip formation and cutting forces in an orthogonal cutting test. This model is able to reproduce physical phenomena in macro cutting conditions (including segmented chip) as well as specific phenomena in micro cutting conditions (minimum chip thickness and size effect). The minimum chip thickness is also taken into account by the global model. The results of simulation for the machining of titanium alloy Ti6Al4V under macro and micro milling condition with the mechanistic model are presented discussed. This approach connects together local machining simulation and global models.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenkun Xie ◽  
Fengzhou Fang

AbstractThe ultimate objective of mechanical cutting is to down minimum chip thickness to single atomic layer. In this study, the cutting-based single atomic layer removal mechanism on monocrystalline copper is investigated by a series of molecular dynamics analysis. The research findings report that when cutting depth decreases to atomic scale, minimum chip thickness could be down to single atomic layer by mechanical cutting using rounded edge tool. The material removal behaviour during cutting-based single atomic layer removal exhibits four characteristics, including chip formation by shearing-stress driven dislocation motion, elastic deformation on the processed surface, atomic sizing effect, and cutting-edge radius effect. Based on this understanding, a new cutting model is proposed to study the material removal behaviour in cutting-based single atomic layer removal process, significantly different from those for nanocutting and conventional cutting. The outcomes provide theoretical support for the research and development of the atomic and close-to-atomic scale manufacturing technology.


2014 ◽  
Vol 602-605 ◽  
pp. 443-446
Author(s):  
Tao Zhang ◽  
Zhen Yu Shi ◽  
Bing Yan ◽  
Hou Jun Qi

Micro cutting is a promising way for manufacturing micro parts, especially micro three dimension parts. Micro hardness is an important character to evaluate surface integrity of machined surface. Micro cutting is different from macro cutting due to size effect of specific cutting energy because of the influence of the ratio of uncut chip thickness to cutting edge radius. A group of micro cutting experiments were conducted to investigate the cutting parameters on the micro hardness of machined surface. The micro hardness of machines surface decreases with the ratio of uncut chip thickness to cutting edge radius first, and then increase when the uncut chip thickness is smaller than the cutting edge radius. The micro hardness shows size effect due to the machined surface compressed twice with the round cutting edge. The micro hardness decreases with the distance increasing far away from the machined surface.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1029
Author(s):  
Michal Skrzyniarz

Micromachining, which is used for various industrial purposes, requires the depth of cut and feed to be expressed in micrometers. Appropriate stock allowance and cutting conditions need to be selected to ensure that excess material is removed in the form of chips. To calculate the allowance, it is essential to take into account the tool nose radius, as this cutting parameter affects the minimum chip thickness. Theoretical and numerical studies on the topic predominate over experimental ones. This article describes a method and a test setup for determining the minimum chip thickness during turning. The workpiece was ground before turning to prevent radial runout and easily identify the transition zone. Contact and non-contact profilometers were used to measure surface profiles. The main aim of this study was to determine the tool–workpiece interaction stages and the cutting conditions under which material was removed as chips. Additionally, it was necessary to analyze how the feed, cutting speed, and edge radius influenced the minimum chip thickness. This parameter was found to be dependent on the depth of cut and feed. Elastic and plastic deformation and ploughing were observed when the feed rate was lower than the cutting edge radius.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdolreza Bayesteh ◽  
Junghyuk Ko ◽  
Martin Byung-Guk Jun

There is an increasing demand for product miniaturization and parts with features as low as few microns. Micromilling is one of the promising methods to fabricate miniature parts in a wide range of sectors including biomedical, electronic, and aerospace. Due to the large edge radius relative to uncut chip thickness, plowing is a dominant cutting mechanism in micromilling for low feed rates and has adverse effects on the surface quality, and thus, for a given tool path, it is important to be able to predict the amount of plowing. This paper presents a new method to calculate plowing volume for a given tool path in micromilling. For an incremental feed rate movement of a micro end mill along a given tool path, the uncut chip thickness at a given feed rate is determined, and based on the minimum chip thickness value compared to the uncut chip thickness, the areas of plowing and shearing are calculated. The workpiece is represented by a dual-Dexel model, and the simulation properties are initialized with real cutting parameters. During real-time simulation, the plowed volume is calculated using the algorithm developed. The simulated chip area results are qualitatively compared with measured resultant forces for verification of the model and using the model, effects of cutting conditions such as feed rate, edge radius, and radial depth of cut on the amount of shearing and plowing are investigated.


2021 ◽  
Author(s):  
YAO QIAO ◽  
QIWEI ZHANG ◽  
TROY NAKAGAWA ◽  
MARCO SALVIATO

This work proposes an investigation on size effects in micro-scale splitting crack initiation and propagation and their consequences on the macro-scale structural behavior carbon-fiber reinforced polymers under transverse tension. Towards this goal, size effect tests were experimentally conducted on both notch-free [90]n composites and specimens with different notch types under three-point bending. The mechanical tests were followed by morphological studies to identify the micro-scale damage mechanisms and their evolution. The results clearly show that splitting crack initiation in the transverse direction of composites not only happens at the fiber/matrix interface but also in the matrix. Moreover, the subsequent development of these damage mechanisms can depend on the structure size. This interesting phenomenon inherently leads to size-dependent structural behavior which can be described through Baznt’s Size Effect Laws. This study on the splitting crack initiation and propagation can provide unprecedented information for the calibration and validation of micromechanical models for the damage behavior of fiber composites at the microscale.


Sign in / Sign up

Export Citation Format

Share Document