Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions

2019 ◽  
Vol 45 (12) ◽  
pp. 14908-14920 ◽  
Author(s):  
Min Yang ◽  
Changhe Li ◽  
Yanbin Zhang ◽  
Dongzhou Jia ◽  
Runze Li ◽  
...  
Author(s):  
Fernando Brandão de Oliveira ◽  
Alessandro Roger Rodrigues ◽  
Reginaldo Teixeira Coelho ◽  
Adriano Fagali de Souza

2012 ◽  
Vol 504-506 ◽  
pp. 1269-1274 ◽  
Author(s):  
François Ducobu ◽  
Edouard Rivière-Lorphèvre ◽  
Enrico Filippi

Micro-milling with a cutting tool is a manufacturing technique that allows production of parts ranging from several millimeters to several micrometers. The technique is based on a downscaling of macroscopic milling process. Micro-milling is one of the most effective process to produce complex three-dimensional micro-parts, including sharp edges and with a good surface quality. Reducing the dimensions of the cutter and the cutting conditions requires taking into account physical phenomena that can be neglected in macro-milling. These phenomena include a size effect (nonlinear rising of specific cutting force when chip thickness decreases), the minimum chip thickness (under a given dimension, no chip can be machined) and the heterogeneity of the material (the size of the grains composing the material is significant as compared to the dimension of the chip). The aim of this paper is to introduce some phenomena, appearing in micromilling, in the mechanistic dynamic simulation software ‘dystamill’ developed for macro-milling. The software is able to simulate the cutting forces, the dynamic behavior of the tool and the workpiece and the kinematic surface finish in 2D1/2 milling operation (slotting, face milling, shoulder milling,…). It can be used to predict chatter-free cutting condition for example. The mechanistic model of the cutting forces is deduced from the local FEM simulation of orthogonal cutting. This FEM model uses the commercial software ABAQUS and is able to simulate chip formation and cutting forces in an orthogonal cutting test. This model is able to reproduce physical phenomena in macro cutting conditions (including segmented chip) as well as specific phenomena in micro cutting conditions (minimum chip thickness and size effect). The minimum chip thickness is also taken into account by the global model. The results of simulation for the machining of titanium alloy Ti6Al4V under macro and micro milling condition with the mechanistic model are presented discussed. This approach connects together local machining simulation and global models.


Author(s):  
Feng Qin ◽  
Xibing Gong ◽  
Kevin Chou

In machining using a diamond-coated tool, the tool geometry and process parameters have compound effects on the thermal and mechanical states in the tools. For example, decreasing the edge radius tends to increase deposition-induced residual stresses at the tool edge interface. Moreover, changing the uncut chip thickness to a small-value range, comparable or smaller than the edge radius, will involve the so-called size effect. In this study, a developed 2D cutting simulation that incorporates deposition residual stresses was applied to evaluate the size effect, at different cutting speeds, on the tool stresses, tool temperatures, specific cutting energy as well as the interface stresses around a cutting edge. The size effect on the radial normal stress is more noticeable at a low speed. In particular, a large uncut chip thickness has a substantially lower stress. On the other hand, the size effect on the circumferential normal stress is more noticeable at a high speed. At a small uncut chip thickness, the stress is largely compressive.


2013 ◽  
Vol 589-590 ◽  
pp. 209-214 ◽  
Author(s):  
Jia Yan Zhao ◽  
Yu Can Fu ◽  
Jiu Hua Xu ◽  
Lin Tian ◽  
Lu Yang

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new experimental system for high speed grinding test with single diamond grain is presented. The differences of surface topography and chip morphology of Inconel 718 machined by single diamond grain and single CBN grain were evaluated. The grinding forces and corresponding maximum undeformed chip thickness were measured under different grinding speeds. The chips, characterized by crack and segment band feature like the cutting segmented chips, were collected to study the high speed grinding mechanism of nickel-based superalloy. The results show that the grinding speed has an important effect on the forces and chip formation, partly due to the temperature variation. As the speed increases, the groove surface becomes smoother.


2009 ◽  
Vol 407-408 ◽  
pp. 335-338 ◽  
Author(s):  
Jin Sheng Wang ◽  
Da Jian Zhao ◽  
Ya Dong Gong

A micromilling experimental study on AISI 4340 steel is conducted to understand the micromilling principle deeply. The experimental results, especially on the surface roughness and cutting force, are discussed in detail. It has been found the minimum chip thickness influences the surface roughness and cutting force greatly. Meanwhile, the material elastic recover induces the increase of the axial micromilling force. The average cutting force and its spectrum analysis validate the minimum chip thickness approximation of AISI 4340 is about 0.35μm.


Sign in / Sign up

Export Citation Format

Share Document